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Nowcasting Net Asset Values:

The Case of Private Equity

Abstract

We apply advances in analysis of mix frequency and sparse data to estimate “unsmoothed”

private equity (PE) Net Asset Values (NAVs) at the weekly frequency for individual funds.

Using simulations and a large sample of buyout and venture funds, we show that our method

yields superior estimates of fund asset values than a simple approach based on comparable

public asset and as-reported NAVs. Our method easily accommodates additional data on

PE fund portfolios, such as individual holdings, relevant mergers and acquisitions, secondary

trades with fund stakes; extends to other illiquid portfolios that are subject to appraisal bias

while generating irregular and infrequent cash flows. We find significant variation in sys-

tematic and idiosyncratic risk exposures across PE funds and through time. The risk-return

profile based on the samples from the 1990s is not representative of currently operating funds.

The market beta of an average buyout [venture] fund, at 1.05–1.10 [1.20–1.32], is notably

lower than previous studies suggest, while nudging higher exposures results in inferior now-

casts. The overall risk of a median buyout [venture] fund is 33% [38%] per year if measured

in standard deviations of total returns, an increase of 10 [13] percentage points relative to

the series based on as-reported NAVs.

Keywords: Private Equity, Venture Capital, Leveraged Buyouts, Institutional Investors,

State Space Models, Machine Learning

JEL Classification: G23, G24, G30



1 Introduction

Valuing illiquid assets is hard but often necessary to provide critical input for investment

decisions.1 Private equity (PE) investments are a prime example of such a setting whereby

various stakeholders have to rely on infrequently and strategically self-reported Net Asset

Values (NAVs) by fund managers while the secondary markets for most fund stakes are

relatively undeveloped and likely reflect the marginal utility to trade of an unrepresentative

investor.2 However, at least for some PE funds, one has many observations that are plausibly

informative of the market value of the fund portfolio and updated at higher than quarterly

frequencies. These may include characteristics of individual assets held, comparable private

transactions, public returns, the history of fund cash flows, NAV reports and occasional

secondary trades, etc. This paper develops a method of how to use these types of data

jointly in a unified statistical framework to (i) learn about risk, return, and reporting quality

characteristics of individual funds, and (ii) to estimate unbiased asset values at the relevant

data arrival frequency (such as weekly or daily)—i.e., to nowcast PE fund NAVs. Nowcasting

is the prediction of the present, the very near future and the very recent past in economics.

We expand on the methods used in the literature as nowcasting NAVs is more complex than

macroeconomic variables like GDP growth (the most studied example).

We model fund “true” asset values and, correspondingly, “true” returns as the latent

factor in a sparse-data State Space Model (SSM) estimated at high frequencies (relative

to quarterly fund reporting) at an individual PE fund level. Our setup relies on the well-

developed SSM machinery (see, e.g. Durbin and Koopman, 2012) but allows incorporating

salient properties of asset returns such as heteroskedastic volatility. We evaluate the perfor-

mance of our method not only not only via simulated data but also using real PE fund data

arriving after the model estimation period. In particular, we examine out-of-sample realized

cash flows versus the levels implied by the model. This provides additional confidence in

1See Brito (1977); Longstaff (2001); Gârleanu (2009); Ang et al. (2014) among others.
2See Ewens et al. (2013); Brown et al. (2019) and Nadauld et al. (2016).
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the SSM parameters that we estimate with the help of machine-learning methods for each of

1,745 funds, or 62% of our sample, independently. For 65% to 80% (depending on the met-

ric) of these funds the model outperforms a näıve but intuitive approach whereby reported

NAVs are extrapolated using cash flows and returns of a comparable public asset.

We show that, with partial imputation of auxiliary parameters using peer funds, we can

estimate fund-level SSMs for over 94% of the sample funds with a 73-86% improvement rate

relatively to the näıve approach. The peer funds are defined as having the same strategy

and/or industry, a vintage within one year and having the same size tercile as the estimand

fund. Our performance assessment metrics are based on the idea that if the fund’s true

returns were observed and used to discount fund cash flows (and the true net asset values),

the fund to-date PMEs (Kaplan and Schoar, 2005) computed using these series would be

equal to one. Furthermore, we show that, given fund-level SSM estimates, the in-sample

performance is a good predictor of the out-of-sample performance, yielding useful criteria

for model selection and forecast combination. Using our estimate of fund NAVs reduces the

out-of-sample forecast error of subsequent cash flows by 55-58% relative to the as-reported

NAVs of a typical fund, with filtered weekly returns featuring zero autocorrelation and

realistic standard deviations (e.g., 33% to 38% per year).

There are two pillars to our approach. One is that we use the individual fund-level data on

cash flows and NAVs simultaneously to identify how NAVs are “smoothed” while jointly esti-

mating the fund’s systematic and idiosyncratic risk exposures. This is different from existing

work featuring the complete fund-level data that either (i) relies on reported NAVs and at-

tempts to remove autocorrelation induced by smoothing via a distributed lag market-model/

panel-AR(p) (Woodward and Hall, 2004; Ewens et al., 2013; Goetzmann et al., 2018), or (ii)

disregards the NAV information altogether and relies solely on funds’ realized cash flow

data (see, inter alia, Driessen et al., 2012; Franzoni et al., 2012; Buchner and Stucke, 2014;

Ang et al., 2018). For a typical fund with say 40 NAV reports and 25 distributions over a

10-year life we gain 22 degrees of freedom as we only need to estimate at most 3 additional
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parameters. The second pillar is that we unsmooth weekly returns cumulative since a fund’s

inception (rather than per quarter returns, see also Ang 2014).3 This is more consistent with

microfoundations for the smoothing bias whereby appraisers look back for relevant events

within the past quarter to arrive at their valuation assessment.

A key challenge for studies featuring deal-level datasets has been addressing selection

bias in observed deal realizations (typically successful ones) relative to the overall pool of

investments (Cochrane, 2005; Korteweg and Sorensen, 2010). This challenge is mostly re-

solved in our framework since we use the complete history of fund-level investments. In

our analysis, deal-level data merely help to better identify the fund’s structural risk–return

parameters and the inference about the cumulative return path. In other words, deal-level

data significantly reduce noise for fund SSM estimates and potentially reduce the number of

parameters that require estimation but do not induce selection bias. However, even without

portfolio company data, model performance is improved by augmenting the analysis with

high frequency comparable benchmark returns.

The PE fund sample for this study is provided by Burgiss (see Brown et al., 2015, for

description) and consists of fund-level cash flows between each fund and its investors, fund

NAV reports, as well as data on fund strategy, vintage year, and industry. We do not

observe the information on the fund individual holdings but demonstrate in simulations

that SSM precision improves by a factor of 2-3 for a typical fund even when keeping the

comparable asset match quality unchanged. Observing fund portfolio-level holdings and

their contribution to fund-level NAVs allows us to compute (rather than estimate jointly

with other parameters) the fund distribution density trend and its variance. Utilizing real-

time fund holdings data has additional benefits: (i) the construction of a more informative

comparable public benchmark and (ii) incorporating valuations in recent M&A deals, both

public and private, that feature targets similar to the fund current holdings.

3Note that “detectability” of the smoothing at quarterly frequency implies its “detectability” at weekly
frequency, but not vice verse. For a weekly smoothing at 0.70-rate, quarterly AR(1) is 0.01 but the variance
is only 40% of the unsmoothed series. Thus, regressions at low frequencies never sufficiently unsmooth NAVs.
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In addition to our methodological contribution, we generate important new findings about

fund-level risk and return. For example, we find fund-level systematic risk (beta) to be lower

than many other recent studies. The average (median) is around 1.05 (1.09) for buyout funds

and 1.20 (1.18) for venture funds, as opposed to averages around 1.25 and 1.80, respectively,

in Ang et al. (2018) even though we used their estimates to setup our profile grid for betas.

Part of this difference results from the fact that most studies do not actually estimate the

market beta of a fund over its life time but rather the beta of the panel of time-aggregated

fund cash flows. The distinction is important when cash flows from funds are clustered in time

and contribute greater weight to the panel (e.g. venture in late 90s). Panel-based estimates

generally will not reflect the beta of an average fund in this case. We provide regression

analyses to support this claim. Moreover, we show that “nudging estimation” to feature

higher systematic risk exposures, as well as ignoring the heterogeneity in other parameters

in the cross section of funds, results in inferior nowcasting performance of the fund-level

SSMs, in-sample and out-of-sample. In other words, higher systematic risk assumptions are

less consistent with the fund-level cash flow realizations.

We find notable variation in systematic and idiosyncratic risk exposures across vintage

years. While we do confirm betas in the vicinity of two for half of venture funds incepted

during late 90s, three-quarters of venture funds incepted after 2004 have beta estimate of less

than 1.4. However, the idiosyncratic risk of venture funds—which we measure as a multiple

of GARCH(1,1)-filtered volatility of matching industry excess returns—has rebounded to a

median of 3× from the 2× lows during 2000–2002. As far as temporal trends in buyout

funds, we note an increase in systematic risk relatively to the levels in the 90s, and a spike

in idiosyncratic risk during 2003-2005. The trends in PE fund abnormal returns are broadly

consistent with those documented in prior literature.

While, in principle, our method supports pooling cash flows and NAV data across funds,

we find that this actually complicates the analysis for a few reasons. First, unlike the cash

flow methods described above, our method does not require a balanced panel of capital calls
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and distributions over different calendar time intervals to correlate with the sample of risk

factor realizations. In fact, such a pooling implies strong assumptions—e.g., that funds’

systematic and idiosyncratic risk exposures are exogenous from the risk factor realizations.

Second, we find that averaging several funds with different data coverage quality tends

to result in less precise estimates. Instead, it is more efficient and transparent to impute

parameters that are not well-identifiable for a particular fund with peer-based aggregates

or, even, theoretically motivated values. ‘Better data’ in our context means (i) distributions

spanning multiple quarters, (ii) many NAV reports with variation from the previous quarter,

and (iii) a substantially realized fund. This allows us to identify the fund risk exposures

from the appraisal bias (i.e. NAV smoothing). However, provided that there are at least

some meaningful distributions and consistency in NAV reports, we can still recover the

fund-specific systematic risk, average abnormal return, and “unsmoothed” NAV estimates

by treating some parameters as fixed.

Our paper contributes to recent studies that aim at developing “matrix pricing” for the

portfolios of PE funds using either secondary market trades in fund stakes coupled with

a selection model as in Boyer et al. (2018) or a replication of the PE fund returns with

holding-level matches to public comparable firms as in Stafford (2017). Our methodology

effectively nests both approaches while allowing for fund-level heterogeneity in risk exposures

and taking a more structural approach to modeling the fund return process during the

periods in which the data are not observable.4 We also complement contemporaneous work

by Gupta and Van Nieuwerburgh (2019), who use machine learning tools to estimate multi-

factor time-varying exposures from a panel of PE fund cash flows, as opposed to the bottom-

up approach that matches on portfolio companies’ characteristics. Both approaches can be

used to construct the comparable public asset for our method. As one of many potential

application of our fund-level approach, we demonstrate how asset allocation decisions using

nowcasted NAVs would have been improved around the 2018 financial crisis (section 4.1).

4Matching to the transaction-level public benchmarks is embedded in the construction of fund’s compara-
ble asset, utilizing secondary price data amounts to augmenting the observations vector—see Section A.2.1.
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We argue this case study to be instructive for the valuation challenges that PE fund investors

face during the Covid-19 pandemic.

With regards to methods, our study relates to the nowcasting macroeconomics litera-

ture which relies on SSM methods for the purpose of real-time monitoring of real activity

(in particular GDP growth, see for example the survey of Bańbura et al., 2013), and the

literature on forecast combination for the purpose of nowcasting (see, e.g. Andreou et al.,

2013; Kuzin et al., 2013). The closest to our context application of the Kalman filter is

in Korteweg and Sorensen (2010) who use venture-backed company valuation over several

financing rounds and filter the latent value process in-between those rounds.

While we show that our approach is reasonably robust to autocorrelation in the unob-

served error terms and the fund idiosyncratic returns not being conditionally Gaussian, some

of the funds’ data features massive outliers. For of all, if the tails are too heavy such that the

variance is near infinite, then obviously the Kalman filter is ill-defined and MLE is infeasible.

This might explain why our iterative procedure does not converge or results in implausible

asset value estimates for about 10% of funds even if almost all parameters are fixed. Minor

departures from normality typically preserve the attractive properties of the Kalman filter

(see, e.g., Schick and Mitter, 1994), although inference is no longer efficient but asymptoti-

cally consistent (see for example the discussion regarding QMLE in Gourieroux et al. 1984).

With mild departures, one typically finds residual autocorrelation which indeed also appears

in some of our results. Nonetheless, the Kalman filter deteriorates in the presence of large

outliers and results in invalid inference. There are some remedies for these situations—see,

i.e., Durbin and Koopman (2000) and Durbin and Koopman (2012). They are usually either

computationally involved or require strong auxiliary assumptions such as the precise nature

of the heavy-tailed distribution. For start, we rely on the standard Kalman filtering proce-

dure and simply discard the minority of cases whereby the procedure clearly fails. We leave

the question of handling outliers and reducing misspecifications in modeling PE fund-like

vehicles as SSM for future research.
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2 Nowcasting Model

Nowcasting is a term coined in meteorology and pertains to the prediction of the present, the

very near future and the very recent past. It has recently become popular in economics as

a method for assessing the current state of an economy. For example, official gross domestic

product (GDP) estimates are only determined after a long delay (and are even then subject

to subsequent revisions) and nowcasting methods can be utilized to generate more timely

estimates for policy and investment decisions.5 Nowcasting is intrinsically a mixed frequency

data problem as the object of interest is a low frequency data series - observed say quarterly

- whereas more real-time information (daily, weekly or monthly) during the quarter can be

used to assess and potentially continuously update the state of the low frequency series, or

put differently, nowcast the series of interest.

There are two types of approaches. The first involves state space models featuring latent

variables, whereas others are based on regression models.6 The fact that a critical part of

our data, i.e. fund cash flows, is observed irregularly, directs our choice towards the SSM

approach. We note that nowcasting can be performed without specifying a model. For

example, PE practitioners often assume that the value of fund assets is equal to the manager

as-reported net asset values on quarter-ends and use a public benchmark return and fund

interim cash flows to interpolate values for dates of interest inside the quarter or extrapolate

beyond the date of latest reported net asset value. This is a reasonable approach but it

makes some very strong assumptions. We will therefore refer to it as a Näıve nowcast of

fund asset values and use it to evaluate the performance of our model-based nowcasts.7

5See Ghysels et al. (2017) for a recent discussion on data revisions and its impact on financial markets.
6The SSMs are estimated via maximum likelihood and using Kalman filtering or smoothing to nowcast

the series of interest. See Nunes (2005) and Giannone et al. (2008) for early examples. In Appendix A.1
we provide a short intro to SSM. The second type of models involves MIDAS regressions, originated by
Ghysels et al. (2006), which are regression models designed to handle data sampled at different frequencies.

7Formally this approach is given by equation A.10 in Appendix, also referred to as “Rct-interpolated
NAVs”. We also show that it corresponds to a particular parameterization of the fund-level SSM.
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2.1 SSM Representation of a PE Fund

We start with the characterization of the return and cash flow generating processes for a

finite-life (usually around 10 years) PE fund. We assume that time t pertains to a weekly

sampling scheme and use the following notations:

• Ct – week t cash flows from investors to the fund (a.k.a., Capital Calls),

• NAVt – fund net asset values reported at the end of week t,

• Dt – fund distributions to its investors on week t,

• Rmt – the systematic risk factor gross return during week t,

• Rct – the average gross return on publicly traded assets comparable to fund in week t,

• ht – the variance of idiosyncratic return on assets similar to those held by the fund t,

• Rt – the gross return on fund asset for week t,

• Vt – the true value of fund assets at the end of week t.

Note that some of these series are latent. For example, the Vt series are not observed and,

hence, neither are the Rt series. Other series are often missing at the weekly sampling

frequency, for example NAVt is reported by the fund GPs approximately every 13 weeks.

We assume that Rmt and Rct are observed (i.e. not missing) for every week t, and focus

on a case of scalar Rct—i.e., the relevant asset returns are aggregated to a single index.

Accordingly, we proxy for ht with a GARCH(1,1)-filtered variance of the idiosyncratic returns

of Rct (from projection on Rmt).

Throughout the paper, we use capital letters to denote the levels of variables (e.g.,

Dt for distribution amount) and lowercase to denote the natural logarithm thereof (rt =

log(Rt), dt = log(Dt), etc.). A lower case letter followed by (·) refers to scalar-valued

function, e.g. involving data, such as λ(·)t pertaining to λ at time t.
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2.2 Model Structure and Parameters

We assume the following relations describe the fund return- and cash flow processes:

Rt =
(
α + β(Rmt − 1) + 1

)
eηt , ηt ∼ N(0, F 2 · ht), (1)

Rct = ert·βc+ψ+ηct , ηct ∼ N(0, F 2
c · ht), (2)

Vt = Vt−1Rt −Dt + Ct, V0 = C0 −D0 > 0 (3)

R0:t =
t∏

τ=1

Rτ ≡ Vt ·Mt, (4)

r̄0:t =
(

1− λ(·)t
)
r0:t + λ(·)tr̄0:t−1, (5)

NAVt = er̄0:t−mt+εnt , εnt ∼ N(0, σ2
n) (6)

Dt = δ(·)t
(
Vt +Dt

)
eεdt iff Dt > 0, εdt ∼ N(0, σ2

d), (7)

governed by the following set of parameters collectively referred to as θ:

• β — fund market risk exposure;

• α — the fund average return per week unexplained by the market risk;

• βc and ψ — respectively, the slope and intercept from a regression of the comparable

asset weekly log returns on those of the fund;

• F and Fc — the scales for the conditional variance ht of distributions from which the

innovations in returns, ηt and ηct, are independently drawn from;

• λ — the structural parameter(s) of the fund appraisal bias function λ(·)t;

• δ — the structural parameter(s) of the fund distribution rule δ(·)t conditional on a

distribution event on week t;

• σn and σd – respectively, the standard deviations on the NAV reporting noise and

distribution rule.

It is worth emphasizing that we are agnostic about the economic interpretation of α-parameter.

It could be, for example, a compensation for the liquidity risk incurred by the fund investors.

Loadings on fund-specific liquidity risk proxies or other priced factors can be examined via
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cross sectional regressions of fund-level α-estimates. Neither does this α reflect any market

timing effects resulting from the schedule of fund cash flows as studied in Gredil (2018).

Applying log transformations to equations (1) through (7), except for (5) which is already

in log form, yields a SSM as detailed in Appendix Section A.2.8 As follows from equations (1)

and (5) NAV appraisal bias is modeled as pertaining to both, systematic and idiosyncratic,

components of fund returns. Also, because t indexes weeks, the model accounts for returns

between the quarterly report dates. Accordingly, the predictable component of the appraisal

bias is represented by the deterministic function λ(·)t which, in our baseline analysis, we

assume to have the following form:

λ(·)t : = λ · (1− wt) , (8)

where λ ∈ (.01, 0.99) is a scalar parameter reflecting the exponential moving average weight

and wt ∈ [0, 1] are the observed fractions of the fund gross assets that the cash flow in period

t comprises in the näıve nowcast of fund asset value. This functional form implies a “first-

in-first-out” assumption about the fund investment–divestment cycle. All else equal, funds

that made substantial distributions recently would be assumed to have “less stale” NAVs.

Meanwhile, the weight of returns occurring before period τ(0 < τ < t) in NAVt is limited

by the fraction of fund capital invested before period τ .

Note that, because equation (5) pertains to cumulative (i.e., since-inception) returns of

the fund—R0:t, we actually model a smoothing of NAVs rather than smoothing of periodic

returns. This is a particularly relevant perspective as it allows us to interpret the reported

NAVs as a weighted-average of valuation snapshots taken at different points in the past.

Furthermore, as follows from the equation, most of the weight may come from weeks within

the past quarter (rather than from ending values of the previous quarters) corresponding

to a realistic assumption about how the actual appraisal of fund assets is performed. This

assumption distinguishes our approach from the extant literature that attempts to unsmooth

8In addition, Appendix A.2.1 contains examples providing further intuition and discusses generalizations
(e.g., incorporating longer-term or event-specific “memory”). Likewise, Appendix A.2.2 provides further
generalizations (e.g., incorporating PE secondary market prices).
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quarterly returns inferred from NAV changes.9 However, since PE funds normally incur

interim capital calls and distributions, cumulative returns are generally not equal to the

asset values (scaled by initial investment). Therefore we introduce a mapping function—Mt

(which mt is a log of), implicitly defined by equations (4) and (6). It is a step-function which

accounts for the history of cash flows and valuations and is further discussed in Section 2.4.

For the distribution rule δ(·)t, we assume:

δ(·)t : = min(0.99, δ · ty) , (9)

where δ ∈ (0, 1) is a scalar parameter, whereas ty is the time (in years) elapsed since the fund

inception. Constraining the domain of δ(·)t has clear economic intuition—until it is known

that the fund is resolved, it has to be that Dt is non-negative and Vt > δ(·)t(Vt +Dt)e
εdt .

The economic interpretation for δ and σd is, respectively, the trend and the noise of

the distribution density. Given equal number of distribution and intervals between them,

funds with higher δ will tend to return capital faster. Overall there is relatively little insight

that can be learned from (δ, σd). One can think of these as just auxiliary parameters re-

lating distributions—which reveal the true (i.e., unsmoothed value) of the parts of the fund

portfolio—and the reported NAVs, therefore allowing for inference about λ and σn). If the

fund individual investments’ valuation reports and exit proceeds were observed, then δ(·)t

need not be estimated. Instead it could be computed as a fraction of the previous quarter

portfolio-level NAVs that the sold assets had comprised. Furthermore, under the assumption

that the excess return (relative to the overall fund portfolio) is zero during the exit quarter,

εdt is also zero, which makes σd a redundant parameter too. In that case, dt + mt maps

without uncertainty to the true to-date return r0:t.

9See e.g. Ewens et al. (2013); Goetzmann and Phalippou (2019). Appendix shows that unsmoothing of
the intra-quarter appraisal bias cannot be done using the inter-quarter returns only.
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2.3 Other Estimands of Interest

Given the data observed for week t = 1, ..., T and parameters θ, we can apply the Kalman

filter to obtain estimates of fund returns over each week.10 We then apply the mapping

function Mt in equation (4) to obtain the estimate of the fund asset values. We use the

following notation to emphasize that these estimates are functions of a particular θ and the

ending period T : R̂θ,T
t , R̂θ,T

τ :t , and V̂ θ,T
t , which are conditional on θ and data up to period T.

Note that the parameters in θ are not necessarily obtained through econometric estimation.

As discussed later, they can also be determined via imputations, or values taken from the

prior literature.

In some cases the returns and asset value nowcasts do not depend on whether one can

actually estimate the parameter vector θ. For example, the näıve nowcast that we described

earlier is given by a θ in which βc = 1, Fc = σn = 0, and (α, β, F ) are given from a

regression of Rct on Rmt. In other words, the filtering step is completely independent from

the parameter estimation step that we discuss in the next section.

For each fund and θ of interest, we compute:

1. Variances and autocorrelations of the filtered weekly returns between t = 1 and t = T

using the standard estimators at weekly and quarterly frequency;

2. PME(θ, T )0:t Kaplan and Schoar PMEs on a to-date basis (Brown et al., 2019) that

utilize filtered returns and asset values along with the complete history of fund cash

flows realized up to period t.

3. PME(θ, T )τ :t PMEs on the to-date basis in which capital calls up to period τ < t are

replaced with V̂ θ,τ
τ and R̂θ,T

0:t are replaced with R̂θ,T
τ :t .

While implausibly high (or low) variance and autocorrelations of filtered return in (1)

provide straightforward diagnostics of the model misspecification and the sensitivity to differ-

ent parametrizations, variables in (2)–(3) are the building blocks to nowcasting performance

10We use backward recursion as given by equation (A.3) in the Appendix to utilize information before and
after a given week to infer (i.e. filter) the return over that week as well the cumulative return up to it.
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metrics. They are based on the simple idea that the NPV of cash flows will be zero if true

fund returns are used for discounting. Specifically, we define the following three metrics, so

that each can be interpreted as a fund-specific pricing error:

1. In-Sample RMSE – mean squared difference of PME(θ, T )0:t from one over the

period t = τ0, ..., τ where τ0 and τ are within the span of data used to estimate θ;

2. Out-of-Sample (OOS) RMSE – mean squared deviation of PME(θ, T )τ :T from

one such that no fund-specific data beyond week τ − 1 is used to estimate θ;

3. Hybrid RMSE – mean squared deviation of PME(θ, T )0:t from one over periods

t = τ, ..., T such that no fund-specific data beyond week τ − 1 is used to estimate θ. It

is a hybrid between in-sample and out-of-sample data because, even though it utilizes

the out-of-sample NAVs only, all since-inception cash flows are included. Therefore,

the data partially overlaps with the estimation sample.

The advantage of the OOS metric is that it directly compares the model-predicted asset

values (with the information up to that date only) with subsequent realizations of the cash

flows without a risk of over-fitting to the data used in either filtering or parameter estimation

(which we discuss next). The OOS metric may be ambiguous to interpret for funds that are

far from being resolved and lacks power when NAV reporting noise, σn, is very high.11 In

contrast, the in-sample metric pertains to the structural stability of the model under the

estimated parameters and averages-out the noise. However, it might not be informative if

the parameter estimation (or return filtering) involves a minimand proportional to the square

of logPME. In that sense, the Hybrid metric is a compromise that, at the very least, enables

a comparison of the pricing errors under different θ for a given fund.

11OOS metric will be biased towards rejecting our SSM estimates in favor of ’Rct-interpolated’-NAVs for
unresolved funds. To see this, consider a situation in which there were no distributions after τ so that the
’Rct-interpolated’-NAVs ratio will be exactly as in equation (A.10) yielding a zero error.
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2.4 Parameter Estimation

We estimate the parameter vector θ for each fund in our sample using a combination of two

methods: (i) maximum likelihood (ML) and (ii) (partial) imputation. In both cases, we

utilize a penalty function in spirit of ridge estimators per Le Cessie and Van Houwelingen

(1992), and an iterative procedure in spirit of Expectation Maximization (EM) algorithm

per Dempster et al. (1977).

As discussed in the introduction, our method exploits simultaneously cash flow and re-

ported NAV information. It allows us to obtain fund-specific estimates of the parameter

vector for a majority of funds, independently from data and/or parameters from other funds.

Nevertheless, the span of distributions and innovations in NAV reports for many funds are

simply insufficient to identify all parameters independently (the following section provides

specific criteria). In such cases we resort to imputation. Another reason for adopting this

strategy is that some parameters might not vary much across fund groups, so there are effi-

ciency gains from imputing parameters across peer funds or using estimates reported in the

existing literature. We also find that a partial imputation approach for parameters dominates

the pooling of the data across funds.

In the following subsections, we describe key steps and features of the two approaches we

consider: (1) fund-specific estimates and (2) partially imputed methods. In both, we obtain

standard error estimates for every parameter in θ using the numerical Hessian method as

in Miranda and Fackler (2004). We conclude the section with a synopsis of Monte Carlo

simulation results that illustrate parameter estimation efficiency and nowcasting performance

across different degrees of model misspecification and data quality.12

The important feature of PE fund data is that distributions almost never occur on the

day of NAV reports. This fact allows us to identify σd from σn—the non-persistent noise

parameter on NAV reports. Meanwhile, the sparseness and irregularity in the distribution

12In the Appendix we provide (i) technical details about the estimation (Section A.3), (ii) a description of
the Monte Carlo setup and results (Section A.4), as well as (iii) a single-fund case study that illustrates the
intuition behind the key steps and assumptions (Section A.4.1).
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and NAV vectors mitigates the effect of the autocorrelation in the observed residuals that

arises due to the possible misspecification of both δ(·)t and λ(·)t. We scrutinize this claim in

our simulation and empirical analysis.

2.4.1 Fund-specific estimates

It is well established that identifying just α and β in PE is difficult even when data is

pooled across many funds (e.g., see Ljungqvist and Richardson, 2003; Driessen et al., 2012;

Ang et al., 2018). To estimate the 10-dimensional parameter vector θ by fund, we therefore

proceed in two steps. The goal of the first step is to find the fund-specific α and β that fit

the SSM well while satisfying an additional NPV-based restriction. We pursue this goal via

a profile likelihood method augmented with a penalty function (see, e.g. Ghysels and Qian,

2019, for details). In the second step, we iteratively estimate the remaining 8 parameters in

θ and the value-to-return mapping function m̂t.

To implement the first step, we build a 15-by-15 grid of plausible values for α and β

based on range of estimates obtained from the prior literature. Specifically, in case of a

buyout fund, β ranges between 0.668 and 1.831 with a mean of 1.25 and corresponding 15

probability quantiles—0.01, 0.05, .125, ..., 0.875, 0.95, 0.99; guided by estimates in Ang et al.

(2018).13 We center the α-range at the annualized estimate of fund-level excess returns from

the Kaplan and Schoar (2005) PME method which happens to be 20.5% per year or 0.38%

per week (see Appendix equation (A.11) for details). We consider seven equally spaced

values up to +/-3.5% per year from the each side of the α-range center.

For each of the 225 (α, β)-pairs on the grid we (i) obtain the likelihood score corresponding

to the MLE estimate of (δ, λ, F, σn, σd) in which (α, β) are kept fixed at the respective grid

values and rct is dropped from the observations vector; (ii) evaluate the pricing error that

the (α, β)-pair implies against the fund cash flows.14

13Following Ang et al. (2018), β ∼ N(1.25, 0.25), N(1.80, 0.30), and N(0.77, 0.23) for buyout, venture, and
real estate funds respectively.

14Regarding step (i), the last row in Z̃t and H̃t of the matrix representation of SSM in (A.1) are dropped
while the transition equation remains unchanged. The comparable asset helps with nowcasting but is redun-
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In the second step, we estimate the remaining 8 parameters (collected in the subvector

ϑ), via maximum likelihood while keeping α and β at their optimized profile levels. We use

Rct-interpolated NAVs as the estimate for Vt (see equation (A.8) for details) to construct the

initial asset-to-value mapping. We then iteratively update the mapping function utilizing

equations (A.14–A.16) and re-estimate ϑ using the new mapping until the change in those

ϑ parameters from the previous iteration is below the threshold (eq. A.17).

2.4.2 Partially imputed estimates

Here again we proceed in several steps. First, we estimate α, β, and λ. However, now we

profile α and λ on a 15-by-7 grid, whereby the range for α is determined as before while λ

is centered around that of the peer fund median. Recall that λ is essentially the exponential

moving-average weight, constrained to be below 1 and above 0. We therefore, define the

range of λ in terms of its probit function’s z-score distance from the center.15

As for β, we treat it as a free parameter in the first step but constrained to vary within

just one standard deviation (using again Ang et al. (2018) estimates by fund type) from that

of the peer funds (henceforth, β-anchor). We continue applying the penalty function to the

profiled likelihood grid. However, now the penalty measures the distance from zero for the

autocorrelation of filtered returns (see Section 2.3) obtained from a nowcast with only Rmt.

In doing so, we mitigate forcing too high or too low smoothing intensity upon the fund from

its peers. We find this approach to be more informative about the (β, λ) pair location (than

the PME-based penalty discussed above) when the fund exhibits only several quarters with

meaningful distributions.16

In the second step, we iterate the return-to-value mapping function and the remaining free

parameters until convergence as we do with the fund-specific estimates, however we always

keep F and σn fixed to the median of the peer funds. Therefore, this EM-like procedure

dant for Rm-related parameter identification. Regarding step (ii) –see equation A.12.
15We consider a range from −0.75 to +0.75 with 0.25 increment.
16Effectively, this “nudges” lower autocorrelation magnitudes in the filtered return series.
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(cfr. Dempster et al. 1977) involves only 5 parameters (rather than 8 under the fund-specific

estimation approach).

In both steps, the peer fund estimates are defined as medians of the respective parameter

estimated independently. The next section examines several ways to define peer funds. We

include the fund’s own fund-specific estimates to compute the peer group median. For β,

we additionally consider setting the center of the distribution to be equal to the estimates

in the literature by fund type (Ang et al., 2018).

2.5 Simulation Experiment Summary

An extensive simulation study is conducted to examine the performance of our method with

regards to both parameter estimation and nowcasting performance. One of the focus areas in

this simulation experiment is the consequences of the model misspecification relatively to the

true data generating process. For example, we introduce discontinuous jumps in the funds’

idiosyncratic return processes (as in Korteweg and Nagel 2017) contrary to the assumption

that those are conditionally Gaussian, and examine cases in which the assumed distribution

function (equation 9) is different from the true one.

For brevity, we defer the details to Appendix A.4 where we examine a single case step-by-

step process and report extensive summaries for a realistic panel of simulated funds. Below

we summarize the main takeaways.

1. Nearly all parameters are consistently estimated despite realistically high idiosyncratic

noise in fund returns (unconditionally 40% per year); the typical estimation error on

fund-specific estimates (α, β, λ) is (0.002,0.359,0.054). Cross-sectional variation in α

and β is statistically detectable within as few funds as a hundred.

2. The only key parameter that is affected by non-Gaussian jumps in the true return

process is the volatility scale F , which attenuates to a median of 1.5x from the true

(assumed) level of 2.0, while the noise level in NAV reports is over-estimated with a

0.055 median relatively to a true value of 0.050. However, this bias vanishes if deal-
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level NAVs are utilized (i.e. δ()̇t and σd are computed rather than estimated), while

the efficiency of α and β estimation approaches that of the weekly OLS regressions

estimates that assume fund returns are observable). Reasonable misspecification of

the distribution function has virtually no effect on the consistency and efficiency of key

parameter estimates.

3. Under the assumption that the true parameters are similar to those of the peer funds,

partial imputation discussed in Section 2.4.2 reduces the estimation error on β and λ

by a factor 1.2 to 1.6 but leads to slightly large estimation errors for α.

4. Using the OOS metric, the median nowcast error is about 0.12 in the baseline fund-

specific case (0.07 if deal-level data are utilized) versus 0.28 with näıve nowcast, yielding

an improvement of 74%. With respect to the Hybrid metric, the model estimates result

in smaller nowcast errors for 85-95% of simulated funds and are on average 10-times

smaller than those from näıve nowcasts. Partial imputation of parameters also yields

a modest improvement in the nowcasting performance.

Overall, the simulations suggest that parameter estimation and nowcasting performance

are promising using our methods and that the results are not particularly sensitive to distri-

butional and functional form misspecifications.

3 Empirical Results

In this section, we report results for parameter estimates and nowcasting performance for the

sample of private equity funds provided by Burgiss (see Brown et al., 2015, for description).

The data include fund-level history of cash flows between each fund and its investors, fund

NAVs reports for most quarters, as well as time-invariant data such as fund strategy, vintage

year, and industry based on 8 Global Industry Classification sectors. We use this industry

designation to select a comparable asset as from the S&P500 [MSCI global] subindex for

funds that are classified as focused on North America [Rest of the World] investments. We

18



use the CRSP value-weighted index for market returns.

3.1 PE Fund Sample

Table 1 reports basic summary statistics separately for 1,437 buyout and 1,142 venture funds

in Panels A and B, respectively.17 This is a subset of the Burgiss Manager universe as of

December 2017. It includes the funds that satisfy the following criteria:

• vintage year is between 1983 and 2008,

• operated for at least 23 quarters,

• reported NAV values for at least 10 quarters,

• made at least two distributions,

• have at least two peer funds for which we obtain fund-specific estimates (Section 2.4.1).

The peers are defined as funds of the same type (i.e. buyout or venture) with vintage

years within a year of the fund of interest, and the same size tercile within the strategy.

For feasibility of fund-specific estimates, we additionally require at least five quarters during

which the distributions exceed 5% of fund size and tighten the requirement for the fund

resolution status so that the latest reported NAV does not exceed half of its cumulative

distributions.

These filters drop 119 buyout and 57 venture funds from our sample. We note that

the excluded funds tend to have lower returns and smaller size. For example, the excluded

venture funds had median size/PME of $27mln/0.76 as opposed to $163mln/0.81 for the

included funds. These differences are even larger for the buyout sample at $49/0.95 for

excluded and $399/1.06 for included. Nevertheless, once adjusted for vintage averages, the

differences in performance are statistically insignificant (t-stat of -1.15 for the combined

sample). Furthermore, the excluded funds comprise just less than 2% and 1%, respectively,

of buyout and venture funds and of capital committed. We therefore argue that our estimates

17We classify all none-venture equity-focused (i.e. not debt or mezzanine) funds as buyouts except growth
equity / expansion capital. We examine subcategories later in our analysis.
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are informative of the PE fund universe available for U.S. institutional investors. However,

we do not claim that all our parameter estimates are free of possible selection bias. In

particular, our approach effectively assumes that funds with larger number of distributions

are more indicative of the systematic and idiosyncratic risk exposures within the respective

fund cohort. We note however that this assumption is also present (but in a much stronger

form) in studies that utilize only fund cash flow information for inference about PE risk-

return, as discussed in the introduction.

The last rows of each panel show a cash flow characteristic that is important for the

application of our method (see, e.g, the case study in Appendix Section A.4.1), the number

of quarters with meaningful distributions. It follows that a quarter of buyout funds have

5 or fewer quarters with distributions that exceed 5% of fund size. For venture funds the

corresponding number is only 4. This reduces the feasibility of fund-specific estimates for the

venture sample to a greater extent. We focus on relatively mature funds so we can evaluate

the nowcasting performance.18

3.2 Fund-specific estimates

Table 2 reports summary statistics for fund-specific estimates of SSM parameters and the

assessment of the associated nowcasts. As described in Sections 2.4.1 and 3.1, identification

of these utilizes only the data from the respective fund (besides any matched public bench-

marks) and requires a relatively high number of quarters with substantial distributions made

by the fund. We are able to obtain such fund-specific parameter estimates for 1,745 PE fund

which corresponds to 62% of the fund sample described in Table 1. In subsequent sections,

we will break down selected parameter and nowcasting metrics by fund type and provide a

more granular analyses via multivariate regressions.

18Appendix Table A.2 reports summary statistics for PE Real Estate funds, which we also examine in our
study and apply similar filters to.
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3.2.1 Parameters

Panel A of Table 2 displays selected statistics for the 10-dimensional parameter vector θ. We

observe that the average [median] α of PE funds with fund-specific estimates is 4.8 [0.036]%

per year with an interquartile range of 13.7%. As alluded to earlier, it is not necessarily

representative of a typical fund’s risk-adjusted return since these funds are likely to have a

greater fraction of successful deals that resulted in large distribution amounts happening at

different points of their lives. The loading on the public market return is 1.19 on average,

ranging from 0.668 at the 10th percentile to 1.979 at the 90th. It is somewhat lower than

the 1.25 [1.80] mean βs for buyout and venture from Ang et al. (2018), which we used to

build our profiling grids. This suggests that the penalized Likelihood attains its maximum

at lower values for β..

The third row of Panel A reports the scale coefficient estimate on our proxy of time-

varying idiosyncratic risk. It shows that the standard deviation of idiosyncratic returns for a

typical PE fund is 2.59 times the GARCH(1,1)-filtered idiosyncratic volatility of the matched

industry index. However, we note the large dispersion for this parameter. While it is equal

or smaller than 0.18 for 10% of the funds, it is greater than 5.49 for a quarter of funds. In

fact, for over 10% of funds it hits the upper bound of 10 that we imposed in each estimation.

This suggest that the idiosyncratic volatility parameter is hard to identify at the individual

fund level. However, it seems plausible to assume F is similar across funds within the same

strategy-, vintage-, and size cohort and we utilize this assumption subsequently.

The next two rows of Panel A report summaries of parameters that characterize reporting

quality by PE funds. First, as follows from the percentile ranks of λ, PE fund NAVs indeed

tend to exhibit a very high degree of appraisal smoothing. The median of 0.951 implies

that public market valuations from five or more weeks ago comprise 77.4% (= 0.9515) of a

typical fund NAV report. This exponential weight is consistent with the AR(2) coefficients of

about (0.5,0.3) on quarterly return series derived from reported NAVs. Our results suggest

substantially less smoothing for about the bottom quarter of funds—e.g., λ is 0.869 or less,
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suggesting persistence of only about 0.16 or less at quarterly frequency.

We observe that the average [median] NAV noise—the standard deviation in NAVs that

the SSM cannot attribute to past or future returns—is 4.6 [3.1]%. For some funds it appears

to be implausibly high or low—e.g., 15.6% per the 90th percentile, the lower bound of 0.1%

for over a quarter of funds. Thus, this parameter also appears hard to identify reliably. Just

as with the idiosyncratic risk levels, we subsequently use the fact that these are plausibly

similar across peer funds.19

Panel A also reports δ and σd which govern the fund distribution process. While auxil-

iary in nature, they need to be estimated for each fund to reflect the heterogeneity in the

distribution magnitudes (given the assumed functional form of δ(·)). Here we just note that

for the vast majority of funds both parameters are well within the upper (0.9 and 4) or lower

(0.001) bounds imposed on the estimation.

The last three rows of Panel A report parameters that govern the mapping of the compara-

ble asset to the latent fund returns at the weekly frequency, as per equation (2), representing

the intercept, slope, and the variance scale. Because returns are in logs and the regression

is essentially a reverse one (i.e. factor series on fund series), some caution is required with

their interpretations. In particular, even though the average and median ψ are positive at

about 3% per year, it does not mean that the funds underperformed those industry bench-

marks since the intercept is shifted upward by the 0.5var(ηct)-term. Moreover, the average

[median] βc of 0.79[.812] does not imply that rt are less risky than rct. Instead, βc is inversely

proportional to the loading of rt on rct. Finally, all else equal, lower levels of Fc estimates

can indicate two situations: (i) better match of the comparable asset to the fund, and/or (ii)

overestimated risk level of the fund.20 For a given variance of rct and rmt, the variance of ηct

has to go down if either β or F increases. Therefore, examining the nowcasting performance

sheds light on whether we are in situation (i) or (ii).

19Naturally they relate to fund investments’ type, portfolio diversification and operating period.
20To see this, approximate the log of equation (1) with rt = α∗ + βrmt + ηt, and substitute it in the log

of equation (2). This results in rct = ψ + βcα
∗ + βcβrmt + βcηt + ηct.
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3.2.2 Properties of filtered returns

Panel B of Table 2 compares the autocorrelations and variances of fund returns obtained

from a näıve nowcast that uses reported NAVs with those from fund-specific SSM estimates.

We compare series at two frequencies—weekly and quarterly. For the näıve nowcast, the

quarterly series correspond to NAV-changes adjusted for the value of within-quarter cash

flows, discounted at the industry benchmark returns. Whereas the weekly näıve nowcast

assumes the asset values track the industry benchmark on top of the interpolated between-

quarter change in PME (as from equation A.10). We see that those series suggest a rather

high positive autocorrelation of 41–56% for the typical fund and over 71–89% for a tenth of

the sample. Interestingly though, for another tenth of the sample we observe no meaningful

correlation in näıvely nowcasted returns. Meanwhile the variances subpanel, suggests that

the annualized standard deviation of returns for the middle half of PE funds is between

16.7% and 32.8%.

The SSM-based return nowcasts are obtained via the Kalman filter at weekly frequency

as explained in Section 2.3. We then aggregate these filtered estimates to the quarterly

frequency by summation of the log returns within each quarter. Panel B shows that auto-

correlation of SSM-based fund returns is virtually zero at both frequencies on average (and

for the median fund) and is within 10% of zero at the weekly frequency for the middle two

quartiles. Meanwhile, the variance of filtered returns is a factor of 2 to 2.6 higher than under

the näıve nowcast, suggesting the annualized standard deviations between 24.5% and 54.7%

for the middle two-quartiles.

While these results suggest the SSM-filtered returns are more representative of the true

return process than one inferred from reported NAVs, we note that for a substantial minority

of funds the SSM nowcast exhibit fairly extreme autocorrelations. For example, one-fifth of

the fund sample exhibits the autocorrelation of filtered returns in excess of +0.47 or below

-0.37 at the quarterly frequency. This is likely driven by the model (e.g., λ(·)t and δ(·)t) or

parameter misspecification, and can be addressed on the case-by-case basis in practice. We
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also note that usage of the backward induction with the Kalman filter likely underestimates

the variance of the latent return series, and, hence, overestimates the magnitude of the

correlations.21 To examine the scope of this bias, the last row of Panel C reports the variance

estimate of fund returns derived from the fund parameter and benchmark variance estimates.

Indeed, we see that these are a factor of 1.5 higher than with filtered returns, suggesting that

the typical PE fund total risk is about 44%, if measured by annualized standard deviation.

3.2.3 Nowcasting performance

Panel C of Table 2 reports fund-level nowcasting performance metrics introduced in Sec-

tion 2.3. First, we note that the out-of-sample RMSEs are similar to the in-sample RMSEs

and are positively correlated, as evident from Figure 1 (especially on the pseudo-out-of-

aample basis in Panel A). Thus, the in-sample pricing error is a useful predictor for now-

casting performance as suggested by the simulations discussed in Section 2.5.

Second, SSM-based RMSEs are notably smaller than those from the näıve nowcast, again

as suggested by simulations. For a typical fund, the Hybrid RMSE reduces from 0.34 to

0.097 while the fully-out-of-sample values drop from 0.25 to 0.146 and are sizable across

all percentiles. Figure 2 shows that improvements are largest for funds with relatively large

näıve nowcast errors and that the SSM-based nowcasts are materially inferior to the reported

NAVs only when the latter happen to be particularly good—e.g., to the left of log MSE of

-5 on the x-axis, which corresponds to the RMSE of less than 8.2%.

Across the buyout and venture sample, SSM-based nowcasts with fund-specific parameter

estimates result in smaller Hybrid [OOS] RMSE than the näıve nowcast for 80% [65%] of

individual funds [untabulated]. Our analysis also indicates that the gains are higher when a

portfolio of funds is concerned since the SSM-based nowcast errors are less correlated than

those from the näıve approach.

21The fact that the autocorrelation magnitudes are notably smaller at weekly frequency is also consistent
with this explanation since the bias gets cumulated within a quarter.
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3.3 Partially imputed estimates by fund type

Next, we examine partially imputed parameter estimates as described in Section 2.4.2 and

compare the nowcast performance with that generated by fund-specific estimates. Most

importantly, the partial imputation enables us to obtain parameter estimates for approxi-

mately 95% of the sample funds and, therefore, provide a plausibly representative picture of

the institutional PE fund universe.

We consider three ways to define peer funds. First, in what we will refer to as Peer-

imputed we set F , σn as well as the centers of β-anchor and λ-grid to the median values

of the respective fund-specific parameter values for funds of the same strategy (buyout of

venture) incepted in the same or adjacent vintage year. Additionally, if there are three

or more peer funds in the same size tercile, we limit the peer group to those peers funds

only. We then attempt to further narrow the peer group to at least three funds in the same

industry of specialization.

Second, we take the opposite approach and set the four imputed values to the buyout

or venture fund average in what we refer to as Average-imputed. Finally, we reset the β-

anchor to the strategy-specific estimate from Ang et al. (2018) in what we refer to Literature-

imputed, while keeping λ-grid, F , and σn same as in the Average-imputed case.

Accordingly, we compare the SSM nowcast performance metrics introduced in Section 2.3

under these four different sets of parameters. This exercise sheds light on three important

questions: (i) is there a meaningful time-series variation in PE fund risk-return profile,

(ii) how big is the noise reduction benefit from restricting the fund-specific parameters,

(iii) are our systemic risk exposure estimates more consistent with the fund-level cash flow

observations than previously established in the literature?22

22Ang et al. (2018) encompass the previous literature estimates as priors for Bayesian MCMC.
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3.3.1 Buyout funds

Table 3 reports selected parameters estimates and nowcast performance metrics for the three

imputation methods alongside with the fund-specific estimates. The latter are available for

1,105 funds, while the partial imputation increases the coverage to 1,391 funds (96.7% of the

sample per Panel A of Table 1). For the remaining 3.3% the MLE does not converge.

In Panel A, we focus on how key parameter estimates, namely α and β, very across

estimation methods. We observe that the average and median α estimates of 2.6 to 4.0% are

lower for peer- and average-imputed estimates in comparison to the 5.2-5.3% in fund-specific

estimates sample. However, these are still notably higher than the near-zero values for the

literature-imputed estimates. These also stand out with notably higher βs at 1.55/1.59 on

average/median, especially against the 1.04–1.10 range for mean and medians in fund-specific

and peer-imputed cases.

Additionally, in Panel A we examine the smoothing parameter λ, as well as the variance

scale on comparable asset parameter, Fc, to support the diagnostics discussed in the closing

paragraph of Section 3.2.1. We note that Fc levels go up in peer-imputed versus fund-specific

and partially drop back with the average- and literature-imputed estimates. Meanwhile, we

observe no meaningful variation in the smoothing rate across estimation types in means but

a 3-5pp increase in percentiles below 75th as we go from the peer- to literature-imputed.

Panel B reports quarterly autocorrelations and variances of filtered returns in compari-

son with those from the näıve approach. The latter are computed for the partially-imputed

sample and suggest similar levels of autocorrelation 40.5% as the fund-specific estimates

sample reported in Table 2 (which includes venture funds), and a total level of risk cor-

responding to an annualized standard deviation of returns of 23% for a typical fund. We

note that fund-specific and peer-imputed returns have very similar summary statistics, with

the typical autocorrelation being a bit closer to zero for peer-imputed (0.026 versus 0.074)

and the total risk corresponding to 33-34% return standard deviation per year.23 Mean-

23This is a result of “nudging” via the penalty function as discussed in section 2.4.2.
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while, the filtered returns from average- and literature-imputed estimates have a factor in

the range of 1.5–1.7 higher variances, which translates into annualized standard deviations

of 41–44% for the median fund and over 51% for the funds in the top quartile of total risk.

As for the autocorrelations, the interquartile ranges is similar to that of fund-specific and

peer-imputed but shifted downwards by about 10pp and 15pp, respectively, for average- and

literature-imputed.

Finally, Panel C of the table reports summary statistics for the nowcasting performance

and reveals that the partially-imputed estimates have lower nowcast errors and higher im-

provement rates relative to the näıve nowcast on both Hybrid and OOS basis. However,

performance monotonically declines as we move from peer- to literature-imputed estimates.

For example, the median OOS RMSE with literature-imputed β-anchor is 0.173 and 27%

higher than peer-imputed estimates but nevertheless 42% lower than the näıve nowcast.

Overall, Table 3 suggests the following conclusions. Peer-imputed estimates dominate

other partially-imputed estimates and benefit from a noise suppression relative to the fund-

specific estimates for a majority of cases. Nonetheless, heterogeneity in parameters appears

genuine across buyout funds.24 Forcing higher levels of fund systematic risk tends to not

reduce the autocorrelation magnitudes but, in contrast, seems to amplify the degree of model

misspecification across buyout funds.

3.3.2 Venture funds

Table 4 reports the same analyses as in Table 3 but for the venture fund sample. Fund-

specific estimates are available for 640 funds, while the partial imputation increases the

coverage to 1,052 funds (92.1% of the venture sample).

From Panel A, we see that differences between the fund-specific and peer-imputed in α

as well as β estimates for venture funds appear more stark than those in the buyout sample.

At 1.196, the average peer-imputed β is 0.18 lower than that of fund-specific, albeit the

24In untabulated analyses, we find that the performance gap between peer-imputed and fund-specific
estimates vanishes with funds for which in-sample RMSE from SSM is better then from the näıve approach.
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difference in medians is less than half of that. Most notably, the mean [median] α estimates

at 4.8 [0.5]% for fund-specific case are sharply higher than the 0.1 [-2.7]% levels for peer-

imputed case, and especially so when compared to -3.6 [-6.4]% in the literature-imputed

case. As with buyouts, the latter case is characterized with more than 0.5 higher βs.

Turning to the filtered return analyses in Panel B, we observe a similar pattern as with

buyout funds. Namely, there is a notable and roughly equal reduction in autocorrelations

relative to the näıve method, and a shift towards negative levels for average- and literature-

imputed relative to the fund-specific and peer-imputed. The gap in variances of filtered

returns is less pronounced than in buyout sample. For venture, the literature-imputed esti-

mates correspond to the median standard deviation of 46% annualized as opposed to 35-38%

range with fund-specific and peer-imputed parameters.

In Panel C of Table 4, we observe again a similar pattern as in the corresponding panel

for buyout funds: peer-imputed parameters result in better nowcasts but further reducing

variance in F and σn and/or nudging higher βs appears counter productive. We also note

that, while SSM RMSEs are higher for the venture sample and do not shrink as much

relatively to näıve nowcast as they do with buyout funds, overall the improvement rate is

actually slightly higher for venture funds. For example, 74.6% of venture funds have smaller

OOS RMSE from SSM with peer-imputed parameters than from a näıve nowcast for the

respective fund, as opposed to 72.8% of buyout funds.

It it important to note however that a β closer-to-one does not warrant better nowcasting

performance. This is evident from Table A.2 in the Appendix, which reports a similar

analyses for REPE funds. There again peer-imputed estimates result in best nowcasting

performance with average β being indistinguishable from the literature-imputed levels and

further below one for a typical fund.
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3.4 Discussion

3.4.1 Why do we find lower betas?

Tables 3–4 provide evidence that our estimates of systematic risk level are lower while also

more consistent with cash flows realizations of individual funds. This raises a question of why

other studies found higher β levels for largely same PE funds. One potential explanation

is that funds that have higher risk produce larger cash flows, especially, if higher risk is

associated with higher abnormal returns which appears consistent with differences between

α and β levels in the subsamples with fund-specific estimates and without.

Table 5 tests this hypothesis more formally by regressing fund-level β estimates on fund

characteristics. In specification 1, we regress β on α using fund-specific estimates in Panel

A and peer-imputed in Panel B, while also controlling for fund industry and subtype fixed

effects (discussed below). Both panels reveal a strong positive association between PE funds

excess returns and systematic risk levels. Because β and α are jointly estimated, this regres-

sion result is prone to be affected by an omitted variable bias reflecting the joint estimation

error. We note that such a bias would likely be reducing a positive relationship insofar that

an understated β would result in higher α given the on average positive market returns. Nev-

ertheless, in the remaining specifications we use explanatory variables that are independent

from α estimate—namely, fund size, cumulative distributions and the number thereof—while

not seeking to establish a causal relationship.

Our preferred specification is 6, where we include cash flow characteristics as well ad-

ditionally control for industry and market variance over the life-time of the fund. In both

panels, we see that the fund β increases in fund size and the value of distributions it made.

This explains why we find lower average and median βs. Prior studies have been answering

a different question—what is the β of the panel of fund cash flows (rather than that of an

average or typical fund).25

25In untabulated analyses, we find that these results do not hold for the idiosyncratic risk level which falls
in fund size and insignificantly relates to the fund’s cumulative distributions.
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Figure 3 plots industry and fund subtype fixed effects from specification 6 of both panels.

We see that the industry effects are in concordance with the general intuition that utilities,

non-cyclical consumer goods and health care exhibit less systematic risk relatively to the

‘Consumer Discretionary’-goods baseline, in contrast to ‘Energy’, ‘Telecoms’ and ‘Informa-

tion Technology’. A similar pattern consistent with the economic intuition is observed for

fund subtype fixed effects relatively to ‘buyout’ funds group that has the average beta of just

over one, according to both sets of estimates. Interestingly, we see that late-stage venture

funds have a positive fixed effect as high as early-stage funds for both fund-specific and

peer-imputed estimates, and above that of generalists and expansion capital.

It is also worth noting that prior studies’ inference about β may reflect the marginal

utility to trade of investors in private companies or funds, rather than the risk of the un-

derlying project cash flows. Consistent with this hypothesis, findings of higher level of sys-

tematic risk tend to rely on round-to-round valuation change of venture-backed companies

(Korteweg and Sorensen, 2010) and secondary fund trades in buyouts (Boyer et al., 2018).

Additionally, the contracts between portfolio firms and funds as well as between a fund and

its investors likely further attenuate the risk at fund level. In both, the decision-makers (e.g.

entrepreneurs and fund GPs) get an option-like payout which not only reduces the upside

variation in fund cash flows but subsidizes them on the downside state-contingent cash flow

rights (see, e.g., Kaplan and Strömberg, 2003).

3.4.2 Trends in PE fund risk

The notable differences in nowcasting performance between the peer- and average-imputed

estimates, suggest a meaningful variation in PE fund risk profiles. We depict this via a

vintage-year box plot of α, β, and F in Figure 4.

Panel A of the figure plots the results for the buyout sample. We see two clear spikes

in the idiosyncratic risk exposures, during 1990-93 and then during 2002-05, which also

happened to be the best vintages. The levels for the 2007-08 vintages appear moderate by
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historical standards with excess returns turning slightly negative. As for systematic risk,

the cross-sectional variation appears to dominate the time series trend. Nevertheless, there

appears to be a shift towards consistently above-one median levels post-2000. However, three

quarters of buyout funds have had β estimated at below 1.25 for each vintage since 2005.

Panel B of the figure plots the results for venture sample. Here we note a clear spike in

systematic risk exposures during the 1995–98 vintages, with top-quartile β being in vicinity

of 2.0. We then observe a rapid decline towards sub-one β for more than half of the funds in

2002 vintage and then a rebound towards 1.1–1.3 medians more recently. Nevertheless three

quarters of venture funds have had β estimated at below 1.4 for each vintage since 2005 with

αs starting exceed zero for about half of funds. Interestingly, there is a clear rebound in

the idiosyncratic risk levels taken post-2002 even though the 2007-08 vintage seem to have

scaled back to under 3× the level of public equities.

4 Selected applications

4.1 PE allocations and nowcasts around the GFC

Naturally, the SSM-based nowcasts provide potentially superior basis for asset allocation

decisions, especially after periods of very high or very low returns observed for the funds

of interest and/or the relevant publicly traded assets. Fund investors that assume the as

reported to be unbiased may significantly misjudge their current allocation to PE relatively

to their desired levels.

To illustrate this misvaluation argument and to examine the performance of the SSM

nowcasts around the dramatic regime shifts, we examine the case of great financial crises

of 2008. For this exercise, we restrict our sample to North America buyout and venture

funds that were 5- to 8-years old as of the first half of 2007 and not fully resolved before

2010. Additionally, to reduce the effect of outliers, we require that nowcasted NAVs are

within 1/5× to 5× of the reported ones during 2007. This leaves us with 115 buyout and
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219 venture funds. To measure nowcast performance, we rely on the OOS RMSE metric

introduced in section 2.3, which we recompute for each fund-quarter between Q4 2006 and

Q4 2009.26

Figure 6 reports the results of this case study, separately for buyout and venture subsam-

ples. In particular, panel A reports the 2007–2009 history of average fund NAV, the average

value of public benchmark corresponding to each fund’s industry, and the average nowcast-

ing error using the näıve approach, which takes the reported NAVs as true, as introduced in

Section 2. Both NAVs and public benchmark values are normalized to be one as of Q4 2006.

The panel shows that the public markets rallied through Q3 2007. During that period, the

growth in NAVs trailed that of the markets, and was actually negative in the buyout sample

as those funds we making significant distributions to LPs (not plotted). As the distributions

to LPs dried-up early in 2008, the NAVs of both buyout and venture funds fell at a lower

rate than the public benchmarks. The differences in changes since Q1 2008 would suggest

a 10-to-15% increase of the PE weight in a portfolio the reminder of which was invested in

those public benchmarks.

Panel A also illustrates an intutive trend that, as funds approach resolution, their re-

ported NAVs gradually become more informative of the future distributions (discounted to

the respective NAV date). The dashed line shows the drop in the näıve nowcast error from

the averages of 45 cents on the dollar to 25 [35] for buyout [venture funds].27

Panel B indicates that the apparent outperformance of PE fund NAVs is due to the

changes in the direction of the appraisal bias thereof. This is evident from the bar plot

of the the ratio of reported NAVs to the corresponding SSM nowcasts. It follows that the

average NAV has exceeded the SSM estimate by as much as 10% for the buyout funds in

our cohort, and by as much as 25% in the venture cohort.

Meanwhile the markered lines in panel B show that SSM nowcasts consistently outperform

26For SSM-based nowcasts, we do not reestimate the parameters or filtered returns each quarter but use
the same estimates as in Section 3.

27The 10 percentage point gap that emerged between the two sabsamples is at least partially due to the
2.3-year longer life of the venture subsample.
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the Näıve ones. This is evident from both ratios – the average SSM error to the average

näıve, and the count of funds with SSM outperforming the näıve – being significantly below

one, even when the näıve nowcasting errors shrink as per panel A.

Figure 6 provides another angle to assess the value of our fund-level nowcasts for portfolio

choice. Because few (if any) investors invest in virtually every PE fund in the market, the

means plotted in panel B might not be fully describe the valuation uncertainty faced by a

typical PE investors. Accordingly, instead of the cross sectional means per panel B, the bars

and the lines now reflect the standard deviations of the appraisal bias and nowcast errors

across funds in a given quarter. It follows that the standard deviation of NAV bias spikes

during the crises while the SSM nowcast error across funds drops.

These results suggest that it is important to account for the fund-specific smoothing

parameters and idiosyncratic return paths preceding the market crush. In other words, the

assumption that appraisal bias is same across funds is not supported by the data.

We argue that the takeaway from this GFC case study may apply to the asset valuation

environment investors face amid the COVID-19 pandemic.

5 Conclusion

This paper develops a new method that provides reliable estimates of PE fund asset values at

high frequency while shedding light on rich temporal and cross section variation in manager

risk and reporting quality characteristics even when only fund-level cash flows and NAVs are

utilized. We show how this framework can be extended to incorporate other types of data,

such as portfolio-level deals information, secondary transactions with fund stakes, etc. These

new insights are of critical importance in light of continued growth of PE and other illiquid

assets in the institutional portfolios and the increasingly high regulatory interest to the risks

arising from these investments. Our results suggest that the risk-return profile of PE based

on the samples from the 1990s are likely not representative of the currently operating funds.
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Table 1. Fund sample summary statistics

This table reports summary statistics for the sample of buyout (Panel A), and venture funds (Panel B)
incepted between 1983 and 2008. For the fund to be included in our sample, it has to meet three criteria: (i)
have been operating for at least 6 years since inception, (ii) have at least 20 NAV reports, (ii) have at least
two peer funds which meet criteria for the estimation in which SSM parameters are obtained independently
from other funds (see Section 3.1 for details). # of ’Capital Calls’, ’Distributions’, ’NAV reports’ count the
respective data point for each fund during at most 12 years of fund operations (’Fund life’). Data beyond
12th year of fund life are omitted. ’% Unresolved’ is the ratio of fund latest NAV report to the sum thereof
with the cumulative distributions. The last two rows of each panel count the number of quarters with
non-zero distributions or only when those exceed 5% of fund size.

Panel A. Buyout funds
Number of funds: 1,437

mean sd skew p5 p10 p25 p50 p75 p90 p95

Vintage year 2001.6 6.0 -1.1 1983 1989 1998 2004 2006 2008 2008
Fund size (USD mil.) 939.0 1798.3 5.2 20 49 172 398.5 874 3671 9165
Fund life (years) 11.2 1.0 -1.3 8.04 9.17 10.5 12.0 12.0 12.0 12.0
IRR(%) 11.6 15.7 1.0 -24.2 -9.43 3.60 9.91 17.9 36.4 64.2
Money Multiple 1.7 0.9 3.3 0.22 0.58 1.20 1.57 2.04 3.12 5.26
PME (v. CRSP VW) 1.2 0.6 1.9 0.15 0.39 0.78 1.06 1.43 2.18 3.14
# Capital Calls 31.9 19.9 1.1 3 6 17 28.5 44 68 94
# Distributions 30.3 22.0 2.9 3 7 16 26 38 69 107
# NAV reports 19.7 2.7 -0.8 12 14 18 20 22 23 24
% Resolved 83.8 17.7 -1.7 17.8 44.2 77.8 90.1 96.1 99.6 99.9
# Quarters w/ Dist.> 0 8.5 4.8 0.4 0 1 5 8 12 17 20

w/ Dist > 5% of Fund 5.7 3.7 0.9 0 1 3 5 8 12 17

Panel B. Venture funds
Number of funds: 1,142

mean sd skew p5 p10 p25 p50 p75 p90 p95

Vintage year 1999.9 6.9 -0.9 1981 1985 1997 2000 2006 2008 2008
Fund size (USD mil.) 254.5 323.6 5.1 10 25 74 163 316 743 1530
Fund life (years) 11.4 1.0 -1.9 8.15 9.27 11.1 12.0 12.0 12.0 12.0
IRR(%) 12.6 40.1 5.6 -31.5 -16.1 -3.07 5.16 14.3 63.7 197.9
Money Multiple 2.0 2.8 6.7 0.13 0.31 0.82 1.34 2.04 5.72 15.3
PME (v. CRSP VW) 1.2 1.7 6.4 0.10 0.20 0.52 0.81 1.24 3.25 10.1
# Capital Calls 23.0 16.1 1.9 2 4 12 19 30 52 81
# Distributions 18.7 13.8 1.8 1 3 9 16 25 47 64
# NAV reports 20.4 2.5 -1.2 12 15 19 21 22 23 24
% Resolved 71.7 24.8 -0.9 6.10 20 56 78.2 93 99.3 99.9
# Quarters w/ Dist.> 0 4.9 3.7 1.0 0 0 2 4 7 12 16

w/ Dist > 5% of Fund 3.7 3.0 1.2 0 0 1 3 5 10 13
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Table 2. Summary of fund-specific estimates

This table reports summary statistics parameter estimates and nowcasting performances metrics obtained
with fund-level SSMs for the sample of buyout and venture funds described in Table 1. Panel A reports SSM
parameters that are estimated independently for each fund as described in Section 2.4.1 using at least (most)
four (seven) years. The return autocorrelations and variances in Panel B are computed from the full history
of fund returns estimates. The nowcasting performance metrics in Panel C are as discussed in Section 2.3
utilize at least [most] one [five] remaining years of fund life.

Number of fund-estimates: 1,745
mean sd skew p10 p25 p50 p75 p90

Panel A. Parameter estimates
Main parameters:

α: Excess return (p.a.) 0.048 0.14 2.7 -0.127 -0.035 0.036 0.102 0.265
β: Systematic risk 1.19 0.41 1.1 0.668 0.962 1.102 1.399 1.979
F : Idiosync Volty (×) 3.77 3.21 0.9 0.180 1.364 2.591 5.495 10.00

λ: NAV smoothing bias 0.88 0.20 −2.9 0.357 0.869 0.951 0.983 0.990
σn: NAV report noise 0.046 0.058 2.4 0.001 0.001 0.031 0.059 0.156

δ: Dist intensity trend 0.030 0.10 27.2 0.004 0.010 0.019 0.035 0.079
σd: Dist intensity noise 2.56 0.52 0.5 1.792 2.187 2.512 2.875 3.496

Parameter mapping to Comparable asset:
ψ: log intercept to Fund (p.a.) 0.026 0.11 −0.9 -0.148 -0.041 0.034 0.097 0.184
βi: beta on Fund return 0.53 0.34 1.1 0.123 0.262 0.469 0.722 1.156
Fc: IdVol vs Fund return (×) 0.79 0.42 0.6 0.100 0.546 0.812 0.998 1.488

Panel B. Filtered return properties

Autocorrelations:
Reported NAVs (quarterly) 0.38 0.25 −0.9 -0.050 0.239 0.411 0.559 0.712
SSM estimates (quarterly) 0.042 0.25 0.1 -0.369 -0.133 0.051 0.201 0.472

SSM estimates (weekly) 0.013 0.19 2.0 -0.141 -0.101 −0.060 0.052 0.422
Naive nowcast (weekly) 0.51 0.29 −0.3 0.029 0.266 0.557 0.767 0.895

Variances:
Reported NAVs (quarterly) 0.048 0.23 13.8 0.003 0.007 0.014 0.027 0.103
SSM estimates (quarterly) 0.085 0.37 27.2 0.006 0.015 0.031 0.072 0.263

SSM estimates (weekly) 0.0037 0.006 6.2 <0.001 0.001 0.002 0.004 0.013
SSM parameter-based (weekly) 0.0067 0.007 1.1 0.001 0.001 0.003 0.010 0.020

Panel C. Nowcasted performance assessment

In-Sample RMSE 0.19 0.19 2.3 0.041 0.077 0.128 0.222 0.637

Hybrid RMSE SSM 0.16 0.19 2.5 0.021 0.050 0.097 0.195 0.571
Hybrid RMSE Naive 0.54 0.55 1.8 0.061 0.178 0.341 0.657 2.032

OOS RMSE Naive 0.35 0.34 2.2 0.021 0.117 0.250 0.448 1.025
OOS RMSE SSM 0.24 0.33 4.3 0.011 0.065 0.146 0.290 0.734
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Table 3. Buyout fund estimates comparison

This table reports summary statistics on fund-level SSM parameter estimates (Panel A), fund quarterly
return estimates (Panel B) and nowcasting performances metrics (Panel C) for buyout funds incepted between
1983 and 2008. Section 2.3 defines the nowcasting performance metrics. Row titles indicate the method that
parameter estimates were obtained with. Sections 2.4.1–2.4.2 describe the key differences between fund-
specific and partially imputed parameter estimations. Section 3.3 describes the three different imputation
methods we applied.

Number of fund-level estimates: fund-specific—1,105, partially-imputed—1,391

mean p25 p50 p75 mean p25 p50 p75

Panel A. Selected parameters

α (p.a.) β

Fund-specific 0.052 −0.017 0.053 0.114 1.098 0.839 1.040 1.307
Peer-imputed 0.040 −0.039 0.031 0.105 1.050 0.802 1.089 1.290
Average-imputed 0.036 −0.045 0.026 0.105 1.132 0.803 1.303 1.303
Literature-imputed 0.006 −0.080 −0.002 0.083 1.551 1.250 1.593 1.750

Fc λ

Fund-specific 0.838 0.570 0.842 1.030 0.859 0.843 0.945 0.980
Peer-imputed 1.479 0.770 1.007 1.596 0.886 0.828 0.920 0.965
Average-imputed 1.072 0.710 0.918 1.217 0.880 0.849 0.937 0.963
Literature-imputed 0.989 0.686 0.867 1.119 0.889 0.861 0.967 0.967

Panel B. Fund return properties

Quarterly return autocorrelation Quarterly return variance

Naive nowcast 0.362 0.216 0.405 0.548 0.063 0.007 0.013 0.029
Fund-specific 0.067 −0.100 0.074 0.234 0.076 0.013 0.027 0.070
Peer-imputed 0.057 −0.142 0.026 0.222 0.058 0.017 0.028 0.049
Average-imputed −0.032 −0.222 −0.065 0.112 0.069 0.029 0.043 0.066
Literature-imputed −0.059 −0.247 −0.090 0.075 0.075 0.034 0.049 0.073

Panel C. Nowcast performance assessment

Hybrid RMSE OOS RMSE

Naive nowcast 0.472 0.174 0.329 0.597 0.345 0.110 0.250 0.463
Fund-specific 0.148 0.044 0.084 0.177 0.222 0.054 0.124 0.267
Peer-imputed 0.185 0.049 0.099 0.212 0.174 0.047 0.105 0.207
Average-imputed 0.201 0.060 0.119 0.229 0.186 0.051 0.111 0.213
Literature-imputed 0.208 0.067 0.126 0.241 0.201 0.053 0.118 0.221

Hybrid Improvement Rate OOS Improvement Rate

Fund-specific 0.781 − − − 0.657 − − −
Peer-imputed 0.785 − − − 0.728 − − −
Average-imputed 0.761 − − − 0.714 − − −
Literature-imputed 0.747 − − − 0.696 − − −
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Table 4. Venture fund estimates comparison

This table reports summary statistics on fund-level SSM parameter estimates (Panel A), fund quarterly
return estimates (Panel B) and nowcasting performances metrics (Panel C) for venture funds incepted
between 1983 and 2008. Section 2.3 defines the nowcasting performance metrics. Row titles indicate the
method that parameter estimates were obtained with. Sections 2.4.1–2.4.2 describe the key differences
between fund-specific and partially imputed parameter estimations. Section 3.3 describes the three different
imputation methods we applied.

Number of fund-level estimates: fund-specific—640, partially-imputed—1,052

mean p25 p50 p75 mean p25 p50 p75

Panel A. Key parameter estimates

α β

Fund-specific 0.048 −0.062 0.005 0.080 1.379 1.102 1.102 1.548
Peer-imputed 0.001 −0.114 −0.027 0.058 1.196 0.802 1.178 1.402
Average-imputed −0.007 −0.122 −0.039 0.047 1.325 1.029 1.297 1.629
Literature-imputed −0.036 −0.155 −0.064 0.023 1.720 1.500 1.500 2.100

Fc λ

Fund-specific 0.717 0.495 0.753 0.955 0.904 0.901 0.960 0.985
Peer-imputed 0.900 0.577 0.829 1.073 0.909 0.862 0.934 0.969
Average-imputed 0.755 0.536 0.726 0.916 0.908 0.856 0.965 0.980
Literature-imputed 0.722 0.544 0.704 0.864 0.917 0.906 0.966 0.981

Panel B. Fund return properties

Quarterly return autocorrelation Quarterly return variance

Naive nowcast 0.380 0.257 0.414 0.560 0.060 0.007 0.013 0.029
Fund-specific 0.009 −0.165 0.019 0.172 0.100 0.019 0.036 0.076
Peer-imputed 0.037 −0.125 0.014 0.182 0.074 0.020 0.031 0.050
Average-imputed −0.015 −0.172 −0.037 0.109 0.081 0.031 0.045 0.064
Literature-imputed −0.039 −0.194 −0.060 0.083 0.091 0.038 0.052 0.075

Panel C. Nowcast performance assessment

Hybrid RMSE OOS RMSE

Naive nowcast 0.551 0.198 0.358 0.636 0.386 0.156 0.301 0.509
Fund-specific 0.180 0.061 0.112 0.208 0.237 0.075 0.162 0.298
Peer-imputed 0.151 0.059 0.099 0.176 0.188 0.060 0.136 0.241
Average-imputed 0.168 0.075 0.124 0.199 0.218 0.072 0.158 0.286
Literature-imputed 0.183 0.082 0.137 0.221 0.233 0.081 0.173 0.297

Hybrid Improvement Rate OOS Improvement Rate

Fund-specific 0.811 − − − 0.633 − − −
Peer-imputed 0.864 − − − 0.746 − − −
Average-imputed 0.831 − − − 0.721 − − −
Literature-imputed 0.809 − − − 0.697 − − −
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Table 5. Fund characteristics and Systematic risk exposure

This table regresses PE fund-level β estimates on its α-estimates as well as selected fund characteristics.
Panel A uses the sample of fund-specific estimates, while Panel B uses peer-imputed estimates. The sample
includes PE funds described in Table 1 as well as REPE funds per Table A.2. ***/**/* denotes significance
at 1/5/10% confidence level, t-statistics robust to error clustering at vintage level are reported in parentheses.

Panel A. Fund-specific estimates
(1) (2) (3) (4) (5) (6)

α estimate 0.252***
(3.84)

log(Fund Size) 0.0156** 0.0364*** 0.0353***
(2.04) (4.30) (4.14)

log(
∑

Distributions/Size) 0.0205 0.0712*** 0.0710***
(1.11) (3.39) (3.38)

log(# of Distributions) −0.0457*** −0.0977*** −0.0955***
(−2.75) (−4.96) (−4.79)

Industry variance −0.0087
(−1.18)

Market variance −0.0167
(−0.75)

Industry FE Yes Yes Yes Yes Yes Yes
Fund type FE Yes Yes Yes Yes Yes Yes

Observations 1,953 1,953 1,953 1,953 1,953 1,953
R2 0.252 0.247 0.246 0.249 0.258 0.259

Panel B. Peer-imputed estimates
(1) (2) (3) (4) (5) (6)

α estimate 0.122***
(3.50)

log(Fund Size) 0.0255*** 0.0330*** 0.0317***
(5.12) (5.96) (5.70)

log(
∑

Distributions/Size) 0.0117 0.0332*** 0.0331***
(1.44) (3.22) (3.21)

log(# of Distributions) 0.00280 −0.0340*** −0.0318***
(0.34) (−3.06) (−2.84)

Industry variance −0.0120**
(−2.57)

Market variance −0.0319*
(−1.87)

Industry FE Yes Yes Yes Yes Yes Yes
Fund type FE Yes Yes Yes Yes Yes Yes

Observations 2,758 2,758 2,758 2,758 2,758 2,758
R2 0.155 0.156 0.150 0.149 0.161 0.164
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Figure 1. Predictability of nowcasting performance

This figure compares the logs of in-sample nowcasting error (x-axis) with those out-of-sample (y-axis) as
defined in Section 2.3 using fund-specific estimates summarized in Table 2. A positive slope indicates that
that SSM nowcasting precision is more predictable. Table 1 describes the sample.
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Figure 2. Nowcasting performance assessment

This figure compares nowcasting errors from SSM (y-axis) using fund-specific estimates summarized in
Table 2 with those from a näıve method based on as=reported NAVs and matched benchmark returns. The
metrics are defined in Section 2.3 and are based on the idea that the NPV of fund cash flows has to be zero
if true returns are used to discount them.
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Figure 3. Fund characteristics and Systematic risk exposure

This figure plots fixed effect estimates of regression of fund-level β estimates on fund characteristics corre-
sponding to specification 6 of Table 5. The sample includes PE funds described in Table 1 as well as REPE
funds per Table A.2. ***/**/* denotes significance at 1/5/10% confidence level with inference robust to
clustering at vintage level. The baseline effects are, respectively, ‘Consumer discretionary’ and ‘Buyout’.
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Figure 4. Trends in fund risk and returns

This figure plots the time series and cross-sectional variation of selected fund-level parameters obtained
partially-imputed from peers with fund-specific estimates as described in Sections 2.4.2 and 3.3. The “boxes”
reflect the inter-quartile range and the median of the respective parameter over buyout (Panel A) or venture
(Panel B) funds incepted in the year indicated on the x-axis. Outlier values are not depicted.
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Figure 5. Trends in fund risk and returns—(Continued)
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Figure 6. NAV bias and Nowcasting around the GFC

This figure illustrates the application of SSM for asset allocation decisions concerning PE around dramatic
shifts in public market valuations such as the financial crisis of 2008. The subsample for this exercise includes
115 buyout funds (left-hand charts) and 219 venture funds (right-hand charts). All funds satisfy the following
criteria: (i) were between 5 and 8 years old as of the beginning of 2007, (ii) were not fully resolved before the
beginning of 2010, and (iii) had the ratio of the reported NAVs to SSM-estimated values between 0.20 and
5.0 during 2007. Panel A plots the average as-reported NAVs and industry benchmark cumulative returns,
both normalized by the level Q4 2006, against the mean nowcasting error on the out-of-sample basis using
the näıve approach (section 2.3). Panel B shows the time series estimates of the average appraisal bias inherit
in the reported NAVs and the extent of SSM-based nowcast improvement relatively to the näıve approach.
Panel C shows the cross sectional variation in the NAV bias estimates and the SSM-based nowcast error
during the period between Q4 2006 and Q4 2009. Section 4.1 provides details.
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Gârleanu, N., 2009. Portfolio choice and pricing in illiquid markets. Journal of Economic Theory
144, 532–564.

Ghysels, E., Horan, C., Moench, E., 2017. Forecasting through the rearview mirror: Data revisions
and bond return predictability. Review of Financial Studies 31, 678–714.

Ghysels, E., Qian, H., 2019. Estimating MIDAS regressions via OLS with polynomial parameter
profiling. Econometrics and Statistics 9, 1–16.

Ghysels, E., Santa-Clara, P., Valkanov, R., 2006. Predicting volatility: getting the most out of
return data sampled at different frequencies. Journal of Econometrics 131, 59–95.

Giannone, D., Reichlin, L., Small, D., 2008. Nowcasting: The real-time informational content of
macroeconomic data. Journal of Monetary Economics 55, 665–676.

Goetzmann, William N. and, E. G., Phalippou, L., 2019. How alternative are private markets?
Yale University Working Paper .

Goetzmann, W. N., Gourier, E., Phalippou, L., 2018. How Alternative Are Alternative Investments?
The Case of Private Equity Funds. Yale School of Management Working Paper .

Gornall, W., Strebulaev, I. A., 2017. Squaring venture capital valuations with reality. Journal of
Financial Economics, forthcoming .

Gourieroux, C., Monfort, A., Trognon, A., 1984. Pseudo maximum likelihood methods: Theory.
Econometrica pp. 681–700.

Gredil, O., 2018. Do private equity managers have superior information on public markets? Avail-
able at SSRN 2802640 .

Gredil, O., Griffiths, B. E., Stucke, R., 2014. Benchmarking private equity: The direct alpha
method. Tulane University Working Paper .

Gupta, A., Van Nieuwerburgh, S., 2019. Valuing private equity investments strip by strip. New
York University Working Paper .

Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering 82, 35–45.

Kaplan, S. N., Schoar, A., 2005. Private Equity Performance: Returns, Persistence, and Capital
Flows. Journal of Finance 60, 1791–1823.
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Appendix

A.1 Review of State Space Models

Following a slightly modified notation from Durbin and Koopman (2012), the general linear Gaus-
sian SSM can be written as

yt − Γ̃txt = Z̃tst + εt, , εt ∼ N(0, H̃t),

st+1 = G̃tst + Ṽtηt, , ηt ∼ N(0, Q̃t), t = 1, ..., T,
(A.1)

where yt is a p-by-1 vector of data observable at period t with some (or all) entries possibly being
missing, xt—a n-by-1 vector of observable regressors that explain the variation in yt, st—a m-by-1
vector of unobserved state that explains the residual variation in the data (i.e., yt − Γ̃txt) up to
mutually and temporarily uncorrelated vectors of normally distributed shocks εt and ηt. The first
equation in (A.1) is referred to as observation or measurement while the second equation, which
describes the evolution of the latent state, is referred to as state or transition equation. The initial
state value s0 is either known or drawn from a normal distribution as well while being independent
from εt and ηt.

The matrices (Γ̃t, Z̃t,G̃t, Ṽt) and (H̃t,Q̃t) can all be time-varying but deterministic functions of

observed data and/or some parameters θ. Moreover, G̃t−1 and Z̃t can depend on y1, ..., yt−1. It is

intuitive to think about Z̃t and H̃t as measuring sensitivity of the observed data to, respectively,
the state level and to the noise normalized to unit variance.

The important advantage of the SSM approach to a problem is that, given θ, the system (A.1)
enables extracting the expected value estimates of the latent state series st. The most famous
application of this method for Gaussian SSMs is the Kalman filter (Kalman, 1960) in which the
Projection theorem leads to the following standard results derived recursively from t = 1 to t = T :

sfiltert+1 = G̃ts
filter
t + K̃t

(
yresidt − Z̃tsfiltert

)
= E

[
st

∣∣∣Yt] (A.2)

F̃t = Z̃tP̃tZ̃
′
t + H̃t = var

(
yresidt − Z̃tsfiltert

∣∣∣Yt−1

)
P̃t|t = P̃t − P̃tZ̃ ′tF̃−1

t Z̃tP̃t = var
(
sfiltert

∣∣∣Yt)
P̃t+1 = G̃tP̃t|tG̃

′
t + ṼtQ̃tṼ

′
t

where K̃t = G̃tP̃tZ̃
′
tF̃
−1
t is the Kalman Gain, and yresidt := yt − Γ̃txt while Yt denotes the set of

the past observations, (yresid1
′, . . . , yresidt

′)′. The equations in (A.2) are also called the Forward
recursion as they estimate of state st increments forward each period as new information becomes
available. However, depending on the problem under consideration, it may be appropriate to
condition on the observations from future periods τ, t < τ < T , as well to form the estimate of the
state value as of t. This is known respectively as Kalman smoother and backward recursion. It can
be defined as an adjustment to the estimates from Forward recursion:

ssmootht = sfiltert + P̃tbt−1 = E
[
st

∣∣∣YT ], (A.3)

where bt−1 = Z̃ ′tF̃
−1
t

(
yresidτ − Z̃τsfilterτ

)
+
(
G̃t − K̃tZ̃t

)′
bt and: P̃tbt−1 =

∑T
τ=t cov

(
sfiltert , yresidτ −

Z̃τs
filter
τ

)
F̃−1
τ

(
yresidτ − Z̃τsfilterτ

)
since ηt and εt are mutually and temporarily independent.

A final word about estimation, which uses the maximum likelihood principle. Suppose we collect
all the parameters governing the matrices Γ̃t, Z̃t, G̃t, Ṽt, H̃t, Q̃t, G̃t−1, Z̃t, Z̃t, and H̃t, is denoted θ
∈ Θ. We will denote the Gaussian likelihood given the data and parameter vector by L((yt, xt), t =
1, . . . , T ; θ) (see again Durbin and Koopman (2012) for details of the likelihood fn specification).
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A.2 SSM Representation of PE Fund - Details

We proceed with casting the equations (1) through (7) as a SSM per equation (A.1):

yt = [dt−1 navt−2 rc,t]
′ , Γ̃t = I3×3, xt = [m̂t−1 m̂t−2 0]′ , (A.4)

Z̃t =

 0 1 0 log
(

δ(·)t
1−δ(·)t

)
0 0 1 0
βc 0 0 ψ

 , st =

 rt
r0:t−1
r̄0:t−2

1

 , H̃t =

σd 0 0
0 σn 0

0 0 Fc
√
ĥt

 , (A.5)

G̃t =


0 0 0 αβ(·)t+1
1 1 0 0

0
(

1− λ(·)t−1

)
λ(·)t−1 0

0 0 0 1

 , Ṽt =

F00
0

 , Q̃t =

√
ĥt+1, (A.6)

where dt is set to missing values whenever Dt = 0 (i.e., all but 20-30 weeks), navt is set to missing
values whenever the NAV report from GPs is not available (i.e., normally 12 weeks out of 13), and

αβ(·)t := log
(
α+ β(Rmt − 1) + 1

)
. (A.7)

Let us first discuss the state vector st appearing in equation (A.5). The first entry of the state
vector is defined as rt = αβ(·)t + ηt, corresponding to the log of equation (1). The last element of
the state vector st is a constant, while the other two simply accumulate the realizations of rt since
the fund inception at t = 0 until t − 1 or t − 2, respectively denoted r0:t−1 and r̄0:t−2, and then
produce the exponentially moving average thereof so that they could be related to the observed fund
distributions and NAV reports respectively. Note that this introduces nonstationarity into the state
space models, since the cumulative sums are trending series. This is a topic worth discussing here.
As highlighted by De Jong (1988) and Kohn and Ansley (1989), among others, while state space
models can be applied to nonstationary process, provided that the initialization of the Kalman filter
is handled properly. It is worth highlighting that we do not face this problem because the start
values for r0:t−1 and r̄0:t−2 are in both cases r0, a stationary series with well defined unconditional
mean and variance. This implies that the initialization of the Kalman filter is standard.

Next we discuss the vector of observables, denoted yt appearing in equation (A.4). The only entry
without missing values for any weeks is the comparable asset return, rct, which ideally should be
a portfolio of the publicly traded assets matched to the fund holdings as of the beginning of week
t. The weekly observed process rct relates directly to that key state variable, i.e. the fund latent
return series, rt, through the loading βc with a heteroskedastic unobserved error, ψ + ηt.

The other two elements of yt, namely dt−1 and navt−2, reflect the up-to-period t history of fund
cash flows and, therefore, cannot be mapped to the fund since inception returns directly. Instead,
they are converted to returns via the mapping function mt which is implicitly defined by equa-
tions (4) and (6). These mapping functions are step-functions that increment whenever the fund
makes distributions or capital call (as follows from equation (3), note that it is undefined for the
last period since VT is zero - in this case, mT−1 should be used):

mt −mt−1 = log
(

(Vt +Dt − Ct)/Vt
)
. (A.8)

However, since the true fund asset values are unobserved, the vector of regressors xt contains the
correspondent lags of the best feasible estimates of mt that are filtered from an auxiliary SSM
parametrized with the same θ as the PE fund SSM described in Section 2.4.

The other latent process featuring in both H̃t and Q̃t is the stochastic variance factor ht, which
scales distributions of idiosyncratic return shocks: ηt and ηct. We obtain a proxy of it from a weekly
frequency GARCH(1,1)-filter of comparable asset returns Rct orthogonalized with respect to the
risk-factor returns Rmt. We estimate the GARCH models separately and ignore the estimation
uncertainty caused by the plug-in method we use for volatility in the model.
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A.2.1 NAV smoothing and noise

Equations (5), (6) and (8) assume that the NAV appraisal process is governed by a parametric
function λ(·)t and a mean-zero noise εnt parametrized by time-invariant σn. It is important to
note that smoothing pertains to both systematic and idiosyncratic component of fund returns and
accounts for the path of returns between the quarterly report dates as t indexes weeks. Following
equation 8, λ ∈ (0.01, 0.99) is the structural parameter to be estimated while wt ∈ [0, 1] is the
observed values reflecting the fraction of the fund assets that the cash flow in period t comprises.
Below we provide some examples.

Consider a period when distribution Dt fully resolves the fund so that residual NAV is known to
be zero. For this case, w̃t = Dt/( ˆNAV t + Dt) = 1. Consequently, from equations (5) and (8), it
follows that the “smoothed” return to-date equals the true one regardless of λ:

r̄0:t =
(

1− λ(1− w̃t)
)
r0:t + λ(1− w̃t)r̄0:t−1

=
(

1− λ · 0
)
r0:t + λ · 0 · r̄0:t−1

Suppose that wt = 0.5 instead, which would be the case if Ct doubles the fund capital invested
or Dt resolves the fund by half (i.e., Dt = ˆNAV t). If the fund GPs put only half of the weight on
past performance (i.e. λ = 0.5), then the smoothed return to-date would equal:

r̄0:t =
(

1− 0.5(1− 0.5)
)
r0:t + 0.5(1− 0.5)r̄0:t−1

= 0.75 · r0:t + 0.25 · r̄0:t−1

as opposed to 0.5 · r0:t + 0.5 · r̄0:t−1 for a period without any cash flows and 0.65 · r0:t + 0.35 · r̄0:t−1
had the GPs been smoothing at the λ = 0.9 rate (given wt = 0.5). Given λ = 0.9 and conditional
on absent cash flows during the quarter (i.e., 13 weeks), the quarter-ago valuations would be
contributing 25.4% (= 0.913) to the current fund NAV reports.

Equation (8) therefore models the fund asset appraisal process to reflect both, the observed
return paths (for rmt and rct) and the unobserved idiosyncratic fund returns, ηt, to be are most
consistent with (i) the realized cash flow pattern and (ii) the history of NAV reports. All else equal,
funds that made substantial distributions recently would be assumed to have less “stale” NAVs.
Meanwhile, the weight of returns occurring before period τ, 0 < τ < t in NAVt is limited by the
fraction of fund capital invested before period τ . While under equation (8) the influence of the past
valuations decays at an exponential rate, it is also straightforward to incorporate “longer memory
events” in our framework by temporarily shifting λ(·)t up post specific events, such as highly related
comparable M&A transaction or IPOs, or by expanding the state-space vector outright.

The Gaussian NAV residual noise parametrized by σn is orthogonal to the observed returns and the
distribution process. While the temporal independence assumption appears implausible for actual
PE funds, we argue that the sparseness in the NAV observation series (i.e., once every 13 weeks
at best) and the irregularity of fund cash flows (and, hence, wt values) mitigate the consequences
of possibly non-zero temporal correlation structure in the residuals for the identification of the
fund model parameters. The entry corresponding to the NAV observations in matrix yt is simply
missing for most observations and almost never overlaps with a non-missing value for dt. To better
illustrate this, we interpolate εnt between the values drawn for the adjacent quarterly NAV reports
to obtain the between quarter estimate of ˆNAV t in a simulation exercise reported in Section A.4.
In addition, we investigate the effect of λ(·)t being misspecified in the estimations relatively to
the data generating process.28 One can also consider making σn time-varying to reflect the stage
of current fund holdings and differences in GP reporting incentives (e.g., see Brown et al., 2019).
The latter can be also modeled as a conditional mean of the distribution of εnt. Similarly, it is
straightforward to incorporate data about carry rule to further reduce noise in the estimation.

28If the econometrician also observes dates and amounts with regards to the individual investments in the fund portfolio,
λ(·)t can be further refined to reflect the return histories during the remaining investments only. Therefore, the ’First-In-First-
Out’-assumption that expression (8) implements is no longer needed.
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A.2.2 Cash flow process

According to equations (7) and (9), the fund distribution process is governed by the parametric
function δ(·)t and a mean-zero noise εdt parametrized by time-invariant σd. By construction, they
are capturing the variation in the fund distributions that cannot be explained the asset return path,
on the one hand, and the periodically observed NAV series, on the other hand. Also note that fund
capital calls do not relate to either δ(·)t or εdt but only affect the asset-to-value mapping function,
mt, discussed later in this section.

While equation (9) certainly misspecifies δ(·)t relatively to the true conditional expectation (and,
therefore inducing potentially heavy temporal dependencies in the residuals), we argue that ir-
regularity in distribution occurrence mitigates the violations of the SSM identifying assumptions
discussed in the beginning of this section. As with NAV smoothing process, we scrutinize this
conjecture in our simulations discussed below.

Another insightful extension to the baseline setup in expressions (1–7) would be utilization of
prices (or quotes) from the secondary market transaction with the fund stakes (e.g., see Nadauld et al.,
2016). As are the fund distributions (in fact, they are equivalent from the LPs perspective), these
prices would map to the fund unsmoothed returns, but one-to-one:

log(SecondaryPricet) +mt = r0:t + εpt , (A.9)

whereby εpt, the price distortion effects, can be either assumed to be zero, or modeled accordingly
to incorporate time-varying demand and supply variation in these still nascent markets (e.g., see
Albuquerque et al., 2018). Similarly, one can incorporate venture deals round valuation data—if
the fraction of reported fund-level NAVs that the deal corresponds to is known.29

A.3 Estimation details

Rct-interpolated NAVs. For any q− < t ≤ q where q and q− are last weeks of two adjacent
quarters ’Rct-interpolated NAVs’ are defined as follows:

Ṽt
ip

= NAVt=q−e
(t−q−)ψq

∏
q−<τ≤t

Rcτ +
∑

q−<τ≤t

(
(Cτ −Dτ )e(t−τ)ψq

∏
τ<p≤t

Rcp
)

(A.10)

where ψq is the quarter-specific drift that makes eq. (A.10) hold if Ṽt
ip

is replaced with NAVt=q.

α-range center for profiling. For center of the α-range, we compute IRRs from the discounted
cash flows as do Gredil, Griffiths, and Stucke (2014):

αp0 = arg min
α

T∑
n=0

(
(Cn −Dn)

∏
n<t≤T

proj{Rct|Rmt} · (1 + α)−n
)

(A.11)

and approximate fund duration with a weighted average life when IRR solutions are ambiguous. In
work contemporaneous to ours, Korteweg and Nagel (2017) show that using average beta estimates
improves inference about fund-level abnormal performance under the Generalized PME framework
in Korteweg and Nagel (2016) even if fund βs are heterogeneous. Therefore, to obtain the center of
the α-grid, we use the projection of fund-matched Rct on Rmt for the discount factor construction.

Penalty function For each combination of α and β on the profile grid (i.e., grid cell ij), we obtain

the maximum likelihood estimates of ϑpoutij and standardize the Loglikelihood scores by subtracting

the grid-wide min and dividing by the grid-wide standard deviation to obtain sLL(αi, βj) ≡ sLLij .
From each sLLij , we then subtract a penalty function sPMEerrij which is the grid-wide stan-

29Provided that the contractual terms are comparable or adjusted accordingly (see Gornall and Strebulaev, 2017).
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dardized PMEerrij defined as:

PMEerrij =
∣∣∣PMEij − 1

∣∣∣ (A.12)

PMEij =

∑T−1
t=0 Dt

∏T
τ=t+1

(
1 + αi + βj(Rmt − 1)

)
+ V̂T +DT∑T−1

t=0 Ct
∏T
τ=t+1

(
1 + αi + βj(Rmt − 1)

)
+ CT

(A.13)

to obtain pLLij , where V̂T = NAVT + ˆbiasT and ˆbiast is the expected appraisal bias at t defined
in equation A.14. Picking the supremum value of pLLij on the grid identifies the correspond-
ing (αp, βp)-pair which we use as fixed data in the second step in which we estimate remaining
parameters, ϑ ∈ θ, as well as mapping-to-value functions and weekly fund returns.

Mapping-to-Parameter iterations. Because our latent state is fund returns and future fund
distributions inherently related to today’s returns, we argue that the backward recursion method is
the most natural choice in our context (i.e. nowcasting). We therefore drop the superscript smooth

and instead superscript it the per period and cumulative returns estimates with the set of SSM
parameters that they were derived upon, e.g. rθt, r

θ
0:t, r̄

θ
0:t. It follows from equations (4) and (6)

that the expected appraisal bias and the the unbiased net asset values (i.e. Vt) for any week t are:

bias(θ)t :=rθ0:t − r̄θ0:t (A.14)

Vt(m̂t; θ)t =exp{rθ0:t − m̂t} (A.15)

Meanwhile, for weeks t when NAV reports are observed (i.e., t ∈ |teq|), the debiased NAV values
have to satisfy:

Vt(NAVt; θ)t = NAVte
−bias(θ)t

∣∣∣ t ∈ |teq| (A.16)

which we use in combination with expression A.8 to obtain m̂t series. However, this makes the
mapping mt a function of parameters θ and equation (A.15) a fixed point. Furthermore, m̂t enter
the observation vector xt and, therefore, potentially affects the parameter values under which the
SSM logLikelihood is maximized. Therefore, starting with the m̂t implied by the Rct-interpolated
NAVs (≡ mt|(rc1, . . . , rcT )), and the corresponding ϑ estimates, we set a loop over i:

m(i)t=1,...,T = m(ϑargMax
i−1 )

ϑargMax
i = arg max

ϑ
LLp(ϑ;m(i)t=1,...,T )

(A.17)

in which m(i)t and ϑargMax
i are re-estimated sequentially until the average change in ϑargMax

i

from ϑargMax
i−1 is smaller than 5% on average across all ϑ elements, whereby LLp denotes the SSM

likelihood function conditional on θ /∈ ϑ being fixed at values determined in the first step.

A.4 Monte Carlo experiment

In this section, we demonstrate our estimation methodology and its nowcasting performance using
simulated data at weekly frequency. We begin with a single-fund case study and then present
evidence aggregated over a random sample of such funds.

A.4.1 Single-fund case study

This particular fund operated for 626 weeks. It made 18 capital calls over the first 215 weeks for
the total of $5.25mln (including $1mln at inception, i.e. week 0) and 25 distributions of various
amounts for a total of $17.71mln at irregular intervals, starting on 110th week.
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Panel A of Figure A.1 plots these data over fund life-weeks, along with the “True Asset Values”
(i.e. Vt in equation 3)—unobservable with real fund data—as well as the quarterly NAV reports
that reflect appraisal smoothing as in equation (8) at λ of 0.90 and the reporting noise volatility,
σn, of 5.0%. We can see that this process generates both upward and downward biases in reported
NAVs (relatively to Vt), depending on the recent path in fund returns, as plotted in Panel C.

Panel B rescales the variables by the fund asset value so that ’D/(D+V)’ correspond to exp{δ(·)t+
εdt} in equation 7 while ’N/V-1’ is the overall reporting distortion, exp{r̄0:t − r0:t + εnt} − 1 in
equations (4–6). The panel also plots similar statistic for weekly series obtained by interpolating
as reported NAVs at the rate of comparable asset returns Rct while accounting for the cash flows
between the quarters (henceforth, ’Rct-interpolated NAVs’, see equation (A.10) below). Essentially,
this is a nowcast of fund NAVs that assumes no appraisal bias present and a unit βc as in equation
(2), providing for a natural benchmark to evaluate the SSM-based nowcasts.

The since-inception return corresponding to ’Rct-interpolated NAVs’ is plotted against the true
since-inception returns (R0:t in equation (4)) in Panel C. By construction, the two series are tightly
correlated and occasionally coincide (e.g., around 250th and 350th weeks). Even though the fund
is fully resolved by the 626th week and the expected per-period difference in idiosyncratic risk
realization—ηct in equation 2—is zero, the series diverge notably towards the end of fund life
nonetheless. The reason for this divergence is the assumptions embedded in the interpolation
procedure in equation (A.10), namely: (i) reported NAVs reflect the true value of fund assets, and
(ii) distributions reduce remaining NAVs one-for-one.

As evident from Panel B and C, the series based on NAV interpolation overshoot whenever the
fund makes distributions following the quarter with downward-biased NAVs. Intuitively, the returns
during periods following these distributions have to be higher than true ones to “catch-up” with
the subsequent NAV report, especially if the latter is less [more] negatively [positively] biased than
the previous. These dynamics are present but concealed with since-inception money multiples (also
plotted in Panel C), which unlike R0:t are Vt−1-weighted per period return, therefore exhibiting
very little variation after Vt gets small in front peak values (around week-200 in this case).30

Figure A.2 depicts the SSM likelihood scores and the pricing error via 3-dimensional mesh plots
on Panel A. Both are normalized by subtracting the grid-wide mean and dividing by standard
deviation. It follows from Panel A that the SSM likelihood scores do peak with respect to β around
the value of 1.20 but hardly exhibit any curvature along the α-axis. In contrast, the flat region
in the surface of pricing errors is off-diagonal.31 Therefore, subtracting these pricing errors from
the SSM likelihood scores—i.e., “penalizing the SSM likelihood”—tends to result in a sharp peak
across both dimensions, as plotted on Panel B. In our case, the maximum corresponds to the (α, β)
pair of (0.308%,1.15)—close to the OLS estimates of (0.327%,1.26) that one would obtain if weekly
(Rt − 1) were regressed on (Rmt − 1), especially when compared to those from quarterly OLS
estimates feasible with real fund data which are plotted as the blue rectangle in Panel B.32

As discussed in the main text, having identified the pair of α and β, we iteratively estimate the
asset-to-value mapping ad the remaining parameters. For this case study fund, this mapping-to-
parameter convergence took 12 iterations and resulted in the following (α, β, ϑ)-vector, whereby
standard errors were obtained using numerical differentiation (see, e.g., Miranda and Fackler, 2004):

α β δ σd λ σn F Fc ψ βc

Estimate .0031 1.154 .0432 1.488 .7918 .0121 2.014 .7853 .0021 .713
SE(Est) .0043 0.643 .0141 1.349 0.0805 .0014 0.832 .108 .0018 0.182

Panel A of Figure A.3 examines the quality of per period fund return estimates for our case fund
by plotting the difference between r̂0t obtained from the SSM parametrized with θ-values tabulated
above and the true r0t as a solid red line. In is natural to compare it to a similar difference
obtained from the intuitive approach based on ’Rct-interpolated NAVs’ plotted with dotted red
line here (obtained by subtracting the solid line from the dashed one in Panel C of Figure A.1). It

30See Brown et al. (2019) for a discussion on inference about NAV appraisal bias with multiples.
31That is typically the case with an upward-trending market return—without regularly spaced intervals, high cumulative

returns can be “equally well explained” by either high slope or large intercept.
32For example, regressing quarterly ’cash flow’-adjusted quarterly growth in NAV on contemporaneous and lagged market

returns yields a beta estimate of at most 0.84 and 0.4 if weekly returns based on ’Rct-interpolated NAVs’ are used.
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follows that the SSM-based series tend to be closer to the true fund returns during and after the
parameter estimation period. The panel also compares three Asset-to-Value mapping functions for
our case study fund: the initial guess, the true, and iteratively estimated one as discussed above.
The latter two tend to be closer indicating that the SSM provides for a better guess of the true
asset values on the cash flow dates.

Panel A of Figure A.3 also conveys the general intuition of our approach—our fund return pre-
diction for a week is a scaled weighted average of rct and rmt unless there is a NAV report or
distribution that justify ηct 6= 0 (see equation 2).33 A distribution also shifts the mapping function
up in proportion to its size relatively to the remaining asset value estimate.

As for nowcasting performance metrics introduced in Section 2.3, the Hybrid and OOS RMSE for
the estimated model-based series are, respectively, 0.066 and 0.063. Both compare favorably with
the respective metrics based on the Näıve nowcast of fund approach (see A.10).

Finally, we note that Figure A.3 there appears to be no sharp change in the SMM performance
in the post-estimation period (397th week). This is to be expected in the case the SSM parameters
are stable during the fund life which might not necessary be the case with real-life PE funds. Either
way, to the extent the choice of parameter estimation window length is not identifying structural
breaks, one can consider the in-sample PME(SSM) values as a predictor of Hybrid and OOS metrics.
Specifically, we compute mean squared deviation from one for the during 156 weeks before tb.

A.4.2 Simulated panel of funds

The case study fund is a draw from the following data generating process. First, we simulate market
returns Rmt from a normal distribution with GARCH(1,1) volatility process corresponding to the
unconditional volatility of 20% per annum.34 We then create 25 vintage years each featuring four
funds that operate for at most 13 years (=676 weeks) and have β ∼ N(1.25, 0.125) with respect to
Rmt and α ∼ N(0, 0.0022), both fixed during fund life. In addition, each fund returns are driven by
mean-zero shocks drawn at weekly frequency as a mixture of two heteroskedastic normal shocks,
one of which is common within vintage but temporarily independent still, and Poisson jumps (see
next paragraph). Meanwhile the benchmark returns, Rct, are obtained by averaging the common
components of fund returns within each vintage-week (i.e. 1+βi(Rmt−1) plus the common shock).

To construct fund non-Rmt returns, ηt, for each week we draw two independent normal shocks
from N(0, ht) where log(ht) ∼ N(ρ0 + ρ1log(ht−1), vv2). We add the two shocks together assuming
that the vintage-wide shock comprises 1/3 and the fund-specific—2/3. This implies that if we

use Rct-based estimates in place of ĥt, the true value of the volatility scale F equals 2 while the
Eη2

t = 0.40.35 In addition, in spirit of simulations in Korteweg and Nagel (2017), we assume that
each week there is 10% probability of a 10% idiosyncratic increase in fund asset value. We draw
these jumps from a Poisson distribution, add them to the normal shocks, and demean the sum to
zero over each fund life before adding to 1 + αi + βi(Rmt + 1) for each fund-week t to obtain Rt.

Next we construct fund cash flows and asset values. Fund cash flow occurrences are drawn from a
Poisson distribution parametrized such that there is on average 15 capital calls lasting through the
225th week and 20 distributions per fund starting with 105th week. The first capital call is equal to
1 with subsequent capital calls (conditional on occurrence) equal to 0.25. Fund distribution process
follows equation (9) with δ set to 0.04 while σd = 1.20. The distribution amounts are determined
sequentially with fund true asset values following equations (3–7). Each fund life ends (i.e., t = T )
on either 676th week or the week in which its true asset values drop below 0.1 (i.e. 10% of the
initial capital call) with the last distribution set to equal VT (and the latter replaced with zero).

Finally, the quarterly observed NAVs are constructed using equations (5–6) by setting λ to 0.9
and drawing observation noise, ent, from N(0, 0.05) independently for each fund-quarter. When
constructing the weekly Rct-interpolated NAVs to estimate change in mapping in equation (A.8)
and λ(·)t-process in equation (8), we interpolate the values of ent between the adjacent quarters
inducing the same autocorrelation pattern in the estimands as if it were real PE fund data.

33This can also be a secondary trade in fund stake, or a comparable exit, or a financing round for the portfolio company.
34The persistence terms on squared return and lagged variance are 0.10 and 0.85, respectively.
35ρ0=−0.5784, ρ1=0.9, vv=0.40p.a., to match the idiosyncratic return volatility estimates in Korteweg and Sorensen (2010).
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Table A.1 reports estimation results for the main parameters of interest and the pricing error
criteria using the holdout fund-weeks as discussed in Section 2.3. First seven columns of each panel
report the means and the medians of parameter estimates across the 100 of simulated funds as
well as the first, second, and third quartile of the root mean squared error of the fund estimate

relatively to the true parameter value. Last four columns report PME( ˆV (θ), r(θ)), denoted with
subscript fund, and PME(NAV, rc), denoted with subscript bmk, for pseudo out-of-sample and
fully out-of-sample case. The sample of 100 simulated funds is common across panels, therefore
POSbmk and FOSbmk are the same panel-wise reflecting same NAVt and rct series.

Panel A reports Direct Estimates as in Section 2.4.1 (henceforth, Baseline) and reveals that
estimated parameters are typically close to the true values, exhibiting minimal bias for (β, λ σn), in
particular. A notable upward bias as well as high levels of RMSE relatively to the true parameter
values are evident for σd and, perhaps, for δ. Panel A also shows an advantage of using fund return
and asset values estimates (over the matched benchmark and as reported NAVs) as both, Hybrid

and OOS, PME( ˆV (θ), r(θ)) tend to be closer to 1 than PME(NAV, rc), while median OOS RMSE
at 0.1171 is less than half of 0.2841 corresponding to the näıve approach.36

In Panel B, we assume the distribution function δ(·)t to be known and feature no uncertainty
σd = 0. As discussed in Section A.2.2, this corresponds to a situation in which one can observe
the fund individual investments’ valuation reports and exit terms. Unsurprisingly, this helps with
estimation precision, especially, with respect to the variance parameters—F (σn) is no longer down-
ward (upward) biased while the associated RMSEs are smaller by a factor of 4 to 15. Interestingly,
the presence of jumps in the fund return process does not prevent consistency in estimating the
volatility scale parameter via MLE which assumes conditionally Gaussian returns. The gains in
precision are also notable for β estimation whereby RMSEs drop by half, as well as for the smooth-
ing parameter, λ. All these translate in better nowcasting performance as Hybrid (OOS) 75th
percentile RMSEs drop to 0.0093(0.1298) from 0.0230(.2368) in Panel A.

In Panel C, we misspecify δ(·)t by assuming in the estimation that δ(·)t is proportional to the
time since last distribution (rather than the time since inception) as in Korteweg and Nagel (2016).
As discussed in Section A.2.2, this induces autocorrelation in the error term of the distribution
equation 7. It follows that this has virtually no adverse effects on the identification of the model
parameters relatively to Baseline, other than δ and σd themselves. Neither does it materially affect
the nowcasting performance relatively to Baseline, consistent with the case study evidence.

In Panel D, we implement the partial imputation approach discussed in Section 2.4.2. While we
do observe improvements to RMSE on a few parameters including β, these are somewhat prede-
termined by the homogeneity in the parameters across funds, and do not translate in meaningful
improvements with regards to nowcasting.

Figure A.4 plots the individual fund estimates of α and β from our SSM against the corresponding
OLS estimates obtain with weekly returns (infeasible with the actual PE data). Panel A shows
that profiled α are well aligned with what one could have estimated if PE funds weekly returns
were observable, even though slightly downward biased. For β, we continue to observe a positive
relation between the two sets of estimates although much greater noise is present.

Finally, Figure A.4 compares the nowcasting performance as per Baseline estimations against the
näıve approach that utilizes as reported NAVs and matched benchmark returns. Panel C focus on
pseudo out-of-sample metric while Panel D—on fully out-of-sample ones, as discussed in Section 2.3.
For better visualization, we utilize the logs of variances so the magnitudes are harder to read than
RMSEs from Table A.1. However, it is clear from that our SSM approach results in better nowcasts
for a significant majority of simulated funds regardless of the metric.

Panel C of Figure A.3 compares the nowcast performance of the SSM parametrized with these θ
for our case study by plotting the quarterly RMSEs for NAV estimation error against those from
the same SSM parametrized with fund-specific estimates referred to as Baseline. We see that NAV
estimates based on Partially imputed θ are often smaller but typically close to the Baseline. The
improvement is due the fact that the peer-imputed (λ, F, σn) are close to the true values than those
estimated directly, which may or may not be true with real-life funds. For comparison, Panel C also
plots quarterly NAV errors for the case when the distribution function δ(·)t need not be estimated
which—as discussed in Section A.2.2—could be the individual deal-level transparency at the fund.

36In untabulated analysis, we review an estimator which profiles α only. It results in larger nowcasting errors.
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Figure A.1. Case study: Data for a hypothetical fund

This figure reports data for a hypothetical PE fund to illustrate our method applications. See Section A.4.1
for description.

Panel A: Cash flows and reported NAVs normalized by first capital call

Panel B: Cash flows and reported NAVs normalized by Asset Values

Panel C: Cumulative returns and Multiples
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Figure A.2. Case study: Profiled Likelihood

This figure illustrates selected parameters’ identification for a hypothetical PE fund to illustrate our method
applications. See Section A.4.1 for description.

Panel A: SSM likelihood and the Penalty function

Panel B: Penalized likelihood
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Figure A.3. Case study: Nowcasting results

This figure demonstrates nowcasts obtained from a SSM for a hypothetical PE fund to illustrate our method
applications. See Section A.4.1 for description.

Panel A: Return estimates and Mapping to Asset Values

Panel B: Asset Value estimates and PMEs

Panel C: Asset Values estimates from models with fewer parameters
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Figure A.4. Monte Carlo experiment: cross-section of α,β and nowcasting
performance

This figure reports SSM estimates on simulated fund data described in Section A.4.2. The dotted and dashed
lines are, respectively, the 45-degree and the least-squared fit lines. Panel A (B) plots the OLS estimates—
which are BLUE but infeasible with the real data—of funds’ α (β) on x-axis against the SSM-based estimates
on y-axis. A positive association and low variance across y-axis indicate good performance of our method.
Whereas Panels C and D plot the log of mean squared error obtained using matched benchmark returns on
x-axis against SSM-based estimated fund returns on y-axis. Panel C (D) uses Hybrid (Out-of-Sample) metric
discussed in Section 2.3. Observations below the 45-degree line indicate outperformance of our method over
a näıve approach that simply uses public benchmark returns to model fund NAVs.

Panel A: α estimates Panel B: β estimates

Panel C: log MSE Hybrid Panel D: log MSE OOS
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Table A.1. Monte Carlo experiment: parameter estimates and nowcasting
performance

This table reports SSM estimates on simulated fund data described in Section A.4.2. Each reports seven
key parameters of interest as well Hybrid and Out-of-Sample (OOS) nowcasting metrics as discussed in
Section 2.3, whereby subscripts bmk and fund denote to the matched benchmark return and SSM-filtered
fund return series, respectively. ’Est. mean’ and ’Est. median’ refer to the simulated fund sample mean and
median estimate of the respective parameter (or of PME against the respective return series for Hybrid/OOS
columns). ’RMSE p25/p50/p75’ refer to the respectively percentile of the Root Mean Squared Error relatively
to the true parameter value (or 1 for Hybrid/OOS columns). Panel A reports the results for baseline
estimation approach, Panel B treats distribution function as known, Panel C misspecifies the estimated
distribution function relatively to the simulated data. Panel D reports results for partially matched parameter
estimates.

Panel A: Baseline

α β δ λ F σd σn Hybridnai Hybridssm OOSnai OOSssm

Est. mean -0.0006 1.2306 0.0485 0.8722 1.7111 2.0340 0.0524 1.4805 1.0422 0.9204 0.9911
Est. median -0.0002 1.2264 0.0470 0.8955 1.4746 2.0364 0.0547 1.1250 1.0093 0.8547 0.9750
RMSE p25 0.0008 0.1406 0.0133 0.0192 0.4006 0.6812 0.0169 0.0333 0.0022 0.1525 0.0418
RMSE p50 0.0022 0.3591 0.0170 0.0544 0.7147 0.8812 0.0358 0.1250 0.0093 0.2841 0.1171
RMSE p75 0.0038 0.5730 0.0225 0.0802 1.4178 1.0314 0.0490 0.3069 0.0230 0.4070 0.2368

Panel B: Known δ(·)t
α β δ λ F σd σn Hybridnai Hybridssm OOSnai OOSssm

Est. mean -0.0005 1.1978 - 0.8774 2.1717 - 0.0484 1.4805 1.0098 0.9204 0.9952
Est. median -0.0002 1.2500 - 0.9000 2.0000 - 0.0500 1.1250 1.0037 0.8547 1.0046
RMSE p25 0.0008 0.0961 - 0.0002 0.1000 - 0.0001 0.0333 0.0012 0.1525 0.0313
RMSE p50 0.0022 0.2099 - 0.0086 0.2417 - 0.0026 0.1250 0.0037 0.2841 0.0712
RMSE p75 0.0038 0.3621 - 0.0264 0.5690 - 0.0050 0.3069 0.0093 0.4070 0.1298

Panel C: Misspecified δ(·)t
α β δ λ F σd σn Hybridnai Hybridssm OOSnai OOSssm

Est. mean -0.0006 1.2433 0.2308 0.8743 1.8297 3.8015 0.0502 1.4805 1.0428 0.9204 1.0396
Est. median -0.0002 1.2264 0.2307 0.9065 1.5543 3.9367 0.0530 1.1250 1.0097 0.8547 0.9828
RMSE p25 0.0008 0.1362 0.1647 0.0223 0.3395 2.4508 0.0169 0.0333 0.0019 0.1525 0.0492
RMSE p50 0.0023 0.3541 0.2007 0.0482 0.8104 2.6415 0.0347 0.1250 0.0097 0.2841 0.1094
RMSE p75 0.0038 0.5644 0.2359 0.0861 1.4166 2.8139 0.0490 0.3069 0.0226 0.4070 0.2364

Panel D: Partially matched parameters (from Baseline)

α β δ λ F σd σn Hybridnai Hybridssm OOSnai OOSssm

Est. mean -0.0006 1.3216 0.0481 0.8722 1.7111 2.0409 0.0524 1.4805 1.0113 0.9204 0.9811
Est. median -0.0002 1.3481 0.0460 0.8974 1.6058 2.0509 0.0460 1.1250 1.0058 0.8547 0.9686
RMSE p25 0.0009 0.0837 0.0131 0.0099 0.3305 0.6909 0.0055 0.0333 0.0015 0.1525 0.0584
RMSE p50 0.0024 0.1853 0.0160 0.0324 0.4728 0.8766 0.0118 0.1250 0.0058 0.2841 0.1108
RMSE p75 0.0040 0.3737 0.0216 0.0536 0.8356 1.0426 0.0209 0.3069 0.0141 0.4070 0.2196
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Table A.2. Real Estate Private Equity (REPE) funds

This table reports summary statistics for the sample of 486 Real Estate funds in our sample, selected SSM
parameter estimates, filtered returns, and nowcasting performance metrics. See Tables 1 and 3 for definitions
and details.

Summary statistics:
mean sd skew p5 p10 p25 p50 p75 p90 p95

Vintage year 2003.2 4.6 -1.1 1989 1994 2000 2005 2007 2008 2008
Fund size (USD mil.) 607.0 860.5 6.1 16 73 206 396.5 684 1725.0 4001
Fund life (years) 10.8 1.4 -1.1 6.40 7.98 9.83 11.2 12.0 12.0 12.0
IRR(%) 4.9 13.7 -0.3 -38.5 -17.6 -2.42 6.06 13.2 25.6 33.6
Money Multiple 1.3 0.6 0.6 0.12 0.36 0.86 1.30 1.62 2.22 3.22
PME (v. CRSP VW) 0.9 0.5 0.9 0.080 0.22 0.56 0.86 1.21 1.75 2.27
# Capital Calls 23.6 18.8 1.7 3 6 11 16 30 63 92
# Distributions 31.9 23.0 1.4 1 5 16 26 45 77 117
# NAV reports 19.1 2.6 -0.6 13 14 18 20 21 23 24
% Resolved 86.2 19.7 -2.0 14.1 39.2 82.3 95.3 99 99.7 100
# Quarters w/ Dist.> 0 9.5 5.8 0.2 0 1 5 9 14 19 22

w/ Dist > 5% of Fund 5.6 4.4 1.0 0 0 2 5 8 14 18

mean p25 p50 p75 mean p25 p50 p75

Key parameter estimates:
α β

Fund-specific 0.031 −0.031 0.048 0.097 0.796 0.576 0.727 1.148
Peer-imputed −0.020 −0.097 −0.004 0.084 0.891 0.717 0.922 1.089
Average-imputed −0.019 −0.091 0.001 0.077 0.912 1.005 1.006 1.006
Literature-imputed −0.019 −0.092 0.001 0.077 0.893 0.875 1.000 1.000

Fc λ

Fund-specific 0.861 0.788 0.917 1.010 0.817 0.821 0.928 0.976
Peer-imputed 1.257 0.875 0.991 1.144 0.889 0.818 0.923 0.972
Average-imputed 0.969 0.818 0.905 1.070 0.890 0.914 0.947 0.947
Literature-imputed 0.982 0.813 0.924 1.085 0.894 0.922 0.953 0.953

Filtered return properties:

Quarterly return autocorrelation Quarterly return variance

Naive nowcast 0.385 0.230 0.416 0.593 0.049 0.005 0.009 0.018
Fund-specific 0.001 −0.182 0.015 0.192 0.082 0.010 0.025 0.076
Peer-imputed 0.019 −0.182 −0.006 0.187 0.052 0.019 0.029 0.047
Average-imputed −0.139 −0.336 −0.168 0.001 0.077 0.042 0.056 0.077
Literature-imputed −0.130 −0.332 −0.168 −0.004 0.076 0.041 0.055 0.077

Nowcast performance assessment:

Hybrid RMSE OOS RMSE

Naive nowcast 0.333 0.158 0.295 0.476 0.335 0.147 0.274 0.470
Fund-specific 0.161 0.037 0.075 0.174 0.227 0.052 0.134 0.262
Peer-imputed 0.176 0.048 0.092 0.197 0.161 0.050 0.101 0.194
Average-imputed 0.208 0.072 0.133 0.259 0.215 0.062 0.133 0.255
Literature-imputed 0.203 0.072 0.130 0.246 0.206 0.053 0.131 0.251
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