

# Performance Analysis and Attribution with Alternative Investments

Institute for Private Capital
Prof. Greg Brown (gregwbrown@unc.edu)



#### Agenda



- White Paper Overview
  - Available here: <a href="https://uncipc.org/index.php/publication/performance-analysis-and-attribution-with-alternative-investments/">https://uncipc.org/index.php/publication/performance-analysis-and-attribution-with-alternative-investments/</a>
- Private Fund Performance Metrics
  - TVPI, IRR, PME, Direct Alpha
  - Example and some details to consider
- Benchmarking Selection and Its Effects
- Other Issues
- Q&A

# White Paper Project in Partnership with IPC's Research Council



- Peter Cornelius: Managing Director, AlpInvest
- Paul Finlayson: Senior Vice President & Product Manager, Northern Trust
- Barry Griffiths: Partner, Landmark Partners
- Dominic Garcia: Chief Pension Investment Strategist, CBRE Global Investors
- Andra Ghent: Professor, Department of Finance, David Eccles School of Business, University of Utah
- Tom Keck: Partner, StepStone Group (Lisa Larsson also assisted with the paper)
- Pierre-Yves Mathonet, Head of Risk, Private Equities Department, ADIA

#### White Paper Research Contributions by:

 Matteo Binfare, Wendy Hu, Christian Lundblad, Richard Maxwell, Shawn Munday, and Lu Yi (and others at IPC partner organizations)

#### White Paper Overview



- Private fund performance analysis and attribution is difficult for all the reasons we know:
  - Lack of market return time series
  - Uncertainty about benchmarks and risk loadings
  - Lack of long/accurate data series for some assets
- Current goal: to start codifying best practices and provide some historical context (where we can)
  - Ultimate goal is common agreement of how to evaluate complete portfolios of liquid, semi-liquid, and illiquid assets
  - Holy Grail: dynamic portfolio optimization across all asset types

#### Outline of Whitepaper



- Survey of extant literature and common metrics
- Analysis of specific asset types:
  - Hedge Funds
  - Private Equity Funds (VC, expansion, buyout, generalists)
  - Private Credit Funds (Senior, Mezzanine, Distressed, Generalists)
  - Real Assets (Real Estate: Value-add, Opportunistic, Generalist)
  - Buyout deal-level attribution
- Diversified Portfolio Factor Model Approach
  - Initial step toward portfolio optimization
- Download from: <u>uncipc.org</u>

#### Measuring private asset performance



- Returns Various methods, but most common are:
  - Multiples (MOIC & TVPI)
  - Internal Rate of Return (IRR)
  - Public Market Equivalent (PME)
  - Direct Alphas (DA)
- Risk Challenging because time-series of true prices not observed
  - Benchmark selection
  - Leverage adjustment
  - Risk factor approach

#### Multiples



- Multiples simply measure the ratio of cash outflows to cash inflows
  - MOIC = multiple on invested capital (more commonly used at deal level)
  - TVPI = total value to paid in capital (more commonly used at fund level)... but fundamentally the same thing.
  - A multiple >1.0 is a profitable investment and a multiple <1.0 is an investment with a loss.</li>
  - If the investment is not fully realized, an estimate of unrealized value (e.g., most recent NAV) is used as a terminal cash flow.
    - This is the case for other performance measures as well

| Pros                                                                        | Cons                                                                                  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <ul><li>Easy to calculate</li><li>Intuitive</li><li>Commonly used</li></ul> | <ul><li>No adjustment for risk</li><li>No adjustment for investment horizon</li></ul> |

#### Internal Rate of Return (IRR)



- The IRR measures the annualized return of the cash flows
  - Defined as the discount rate that sets the net present value of all periodic cash flows (CF<sub>t</sub>) to zero:

$$0 = \sum_{t=0}^{T} \frac{CF_t}{(1 + IRR)^t}$$

 An IRR can be compared to an appropriate opportunity cost of capital to determine if an investment was good or bad

| Pros                                                                        | Cons                                                                                                                                                                      |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Easy to calculate</li><li>Intuitive</li><li>Commonly used</li></ul> | <ul> <li>No explicit adjustment for risk</li> <li>Assumes cash flows are reinvested at<br/>the IRR which is unlikely if the IRR is<br/>very high (or very low)</li> </ul> |

#### Public Market Equivalent (PME)



- Like the multiple, the PME measures the ratio of cash inflows to cash outflows, however the cash flows are future values calculated using realized rates of return for a public market benchmark.
  - A PME>1 (<1) means the investment returned more (less) than the public benchmark.</li>

$$PME = \frac{\sum_{t=0}^{T} CF_t^{inflow} (1 + R_t^M)}{\sum_{t=0}^{T} CF_t^{outflow} (1 + R_t^M)}$$

where  $R_t^M$  is the total return on the public market benchmark between t and T.

# Allows for explicit comparison to a public market benchmark Provides a precise estimate of the total outperformance, e.g., a PME=1.25 means the investment provided a total return that was 25% higher than the public market benchmark Need to pick an appropriate public market benchmark Does not adjust for investment time horizon, e.g., a PME of 1.25 for a 5-year investment is much better than for a 10-year investment

There are different flavors of PME but the method in Kaplan-Schoar (2005) is used the most in research.

#### Direct Alpha (DA)



- Direct Alpha measures the excess return over the benchmark return by calculating the IRR of the future value of all cash flows obtained (as with PME) using returns on a public market benchmark  $(R_t^M)$ 
  - A DA>0% (<0%) means the investment returned more (less) than the public benchmark.</li>

$$0 = \sum_{t=0}^{T} \frac{CF_t(1 + R_t^M)}{(1 + DA)^t}$$

| Pros                                                                                                                                                                                                                                                               | Cons                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| <ul> <li>Allows for explicit comparison to a public market benchmark</li> <li>Provides a precise estimate of the total outperformance on an annualized basis, e.g., a DA=3% means the investment on average returned 3% more than the public benchmark.</li> </ul> | <ul> <li>Need to pick an appropriate public market benchmark</li> </ul> |

For more details see, Gredil, Griffiths, and Stucke, 2014, Benchmarking Private Equity: The Direct Alpha Method <a href="https://ssrn.com/abstract=2403521">https://ssrn.com/abstract=2403521</a>

#### Toy example of performance metrics



| Data      |                 |               |               |  |  |  |
|-----------|-----------------|---------------|---------------|--|--|--|
|           | Benchmark       |               |               |  |  |  |
| Year      | Return (t, t+1) | Contributions | Distributions |  |  |  |
| 0         | 15%             | 15            | 0             |  |  |  |
| 1         | 3%              | 25            | 0             |  |  |  |
| 2         | 10%             | 35            | 5             |  |  |  |
| 3         | 8%              | 20            | 10            |  |  |  |
| 4         | -5%             | 5             | 20            |  |  |  |
| 5         | 25%             | 0             | 15            |  |  |  |
| 6         | 5%              | 0             | 30            |  |  |  |
| 7         | 19%             | 0             | 10            |  |  |  |
| 8         | -3%             | 0             | 20            |  |  |  |
| 9         | 7%              | 0             | 25            |  |  |  |
| 10        |                 | 0             | 15            |  |  |  |
| Total     | 8%              | 100           | 150           |  |  |  |
| Future Va | alue            | 185           | 195           |  |  |  |

| Performance Metrics |       |      |              |  |  |  |
|---------------------|-------|------|--------------|--|--|--|
| TVPI                | IRR   | PME  | Direct Alpha |  |  |  |
| 1.50                | 9.20% | 1.05 | 1.20%        |  |  |  |

- Hypothetical 10-year fund that has \$100 in capital calls in years 0-4 and \$150 in distributions in years 2-10.
- In this case the TVPI is 1.50
- The IRR is 9.20% which is higher than the annualized benchmark return suggesting the fund did better than the benchmark.
- The PME is 1.05 which is the ratio of the future value of Distributions (\$195) to the future value of Contributions (\$185) and indicates that the fund provided 5% more total value than if the same investments were made in the public market benchmark.
- The Direct Alpha is 1.20% which indicates that the fund provided an average annual return that was 1.2% higher than the benchmark.
  - As shown next, it is a coincidence that the Direct Alpha is the same as the difference between the benchmark return and the IRR.

#### Toy example – Timing matters



|                                   | Benchmark<br>Return | TVPI | IRR   | PME  | Direct Alpha |
|-----------------------------------|---------------------|------|-------|------|--------------|
| Typical Market (previous example) | 8.0%                | 1.50 | 9.20% | 1.05 | 1.20%        |
| Bear Followed by Bull Market      | 8.0%                | 1.50 | 9.20% | 1.13 | 2.98%        |
| Bull Followed by Bear Market      | 8.0%                | 1.50 | 9.20% | 0.98 | -0.32%       |

- The path of market returns can affect performance assessment
- We consider the previous example (typical market) with two other scenarios
  - Reorder benchmark returns from <u>lowest to highest</u> (bear followed by bull market)
  - Reorder benchmark returns from <u>highest to lowest</u> (bull followed by bear market)
- Note that in all 3 scenarios the annualized benchmark return remains the same (8.0%) as does the TVPI (1.50) and the IRR (9.20%)
- However, the PMEs and Direct Alphas change with the timing of benchmark returns:
  - For the bear market followed by bull market the <u>PME and Direct Alpha increase</u>, because the future value of relative fund cash flows benefited from this market environment
  - For the bull market followed by bear market the <u>PME falls below 1.0</u> and the <u>Direct Alpha becomes</u>
     <u>negative</u>, indicating that the fund underperformed the benchmark in this market environment
- This example shows how comparing IRRs to market returns can be misleading

#### Selecting the benchmark



### There are two schools of thought on selecting the right benchmark:

- 1. Pick a benchmark that matches the underlying fund assets as closely as possible
  - This approach focuses on making an "apples-to-apples" comparison with the view that investing in the benchmark was an alternative to investing in the fund
  - For example, a small-cap value index might be used for buyout funds and a REIT index might be used for real estate private equity funds
  - This is a preferred approach when evaluating the skill of a manager
- 2. Pick a benchmark that characterizes the asset class risk exposures
  - This approach considers the performance of the fund as part of a broader portfolio and assumes that diversifiable risks (e.g., from sector or size) do not matter
  - For example, a total market index might be used for buyout funds
  - This is a preferred approach when evaluating how a fund contributes to overall portfolio performance



|                      | Historical Excess Returns (Direct Alphas) |        |         |         | ohas)   |
|----------------------|-------------------------------------------|--------|---------|---------|---------|
| Benchmark (Beta=1.0) | 3-year                                    | 5-year | 10-year | 15-year | 25-year |
| MSCI ACWI            | 5.62%                                     | 2.38%  | 4.24%   | 4.53%   | 5.77%   |



|                      | Historical Excess Returns (Direct Alphas |        |         |         |         |
|----------------------|------------------------------------------|--------|---------|---------|---------|
| Benchmark (Beta=1.0) | 3-year                                   | 5-year | 10-year | 15-year | 25-year |
|                      |                                          |        |         |         |         |
| MSCI ACWI            | 5.62%                                    | 2.38%  | 4.24%   | 4.53%   | 5.77%   |
| MSCI ACWI Value      | 12.90%                                   | 6.13%  | 6.31%   | 6.16%   | 10.65%  |
| MSCI ACWI Growth     | -0.65%                                   | -0.90% | 2.40%   | 3.10%   | 8.91%   |
|                      |                                          |        |         |         |         |



|                        | Historical Excess Returns (Direct Alphas |        |         |         |         |
|------------------------|------------------------------------------|--------|---------|---------|---------|
| Benchmark (Beta=1.0)   | 3-year                                   | 5-year | 10-year | 15-year | 25-year |
|                        |                                          |        |         |         |         |
| MSCI ACWI              | 5.62%                                    | 2.38%  | 4.24%   | 4.53%   | 5.77%   |
| MSCI ACWI Value        | 12.90%                                   | 6.13%  | 6.31%   | 6.16%   | 10.65%  |
| MSCI ACWI Growth       | -0.65%                                   | -0.90% | 2.40%   | 3.10%   | 8.91%   |
| MSCI ACWI Small        | 8.76%                                    | 3.28%  | 4.54%   | 3.31%   | 3.95%   |
| MSCI ACWI Small Value  | 14.30%                                   | 5.75%  | 5.72%   | 4.05%   | 3.90%   |
| MSCI ACWI Small Growth | 3.90%                                    | 1.11%  | 3.52%   | 2.69%   | 4.07%   |
|                        |                                          |        |         |         |         |



|                      | Historical Excess Returns (Direct Alpha |        |         |         | ohas)   |
|----------------------|-----------------------------------------|--------|---------|---------|---------|
| Benchmark (Beta=1.0) | 3-year                                  | 5-year | 10-year | 15-year | 25-year |
|                      |                                         |        |         |         |         |
| Russell 3000         | 2.02%                                   | 0.20%  | 0.23%   | 2.19%   | 3.81%   |
| MSCI EAFE            | 11.59%                                  | 6.87%  | 7.60%   | 7.22%   | 7.74%   |
|                      |                                         |        |         |         |         |



|                            | Historical Excess Returns (Direct Alphas) |        |         |         |         |
|----------------------------|-------------------------------------------|--------|---------|---------|---------|
| Benchmark (Beta=1.0)       | 3-year                                    | 5-year | 10-year | 15-year | 25-year |
|                            |                                           |        |         |         |         |
| Russell 3000               | 2.02%                                     | 0.20%  | 0.23%   | 2.19%   | 3.81%   |
| MSCI EAFE                  | 11.59%                                    | 6.87%  | 7.60%   | 7.22%   | 7.74%   |
|                            |                                           |        |         |         |         |
| PE Region-mix Index        | 4.70%                                     | 1.81%  | 3.13%   | 3.86%   | 4.94%   |
| PE Sector-mix Index        | 2.13%                                     | -0.23% | 2.47%   | 3.29%   | 4.97%   |
| PE Sector-Region-mix Index | 2.21%                                     | 0.27%  | 1.42%   | 2.89%   | 4.49%   |
|                            |                                           |        |         |         |         |

#### Risk-adjusting the benchmark



- Evidence suggests that private fund returns generally have higher systematic risk than public benchmarks\*
  - For example, the use of substantial leverage in buyout transactions likely leads to above average risk for these investments
- Recent estimates suggest market betas for most funds are in the range of 0.8-1.3 for buyout funds and for venture funds of about 1.0-2.0 for VC funds
  - Value-weighted portfolios of funds have higher betas because larger funds tend to have higher betas
  - There appears to be considerable cross-sectional and time-series (vintage year)
     variation in betas (see next slide for estimates)
- Benchmarks can be adjusted for leverage using an appropriate beta  $(\beta)$ .

$$r_t^{M*} = r_t^f + \beta * \left(r_t^M - r_t^f\right)$$

where  $r^{M^*}$  is the adjusted benchmark return,  $r^M$  is the unadjusted benchmark return, and  $r^f$  is the risk-free rate.

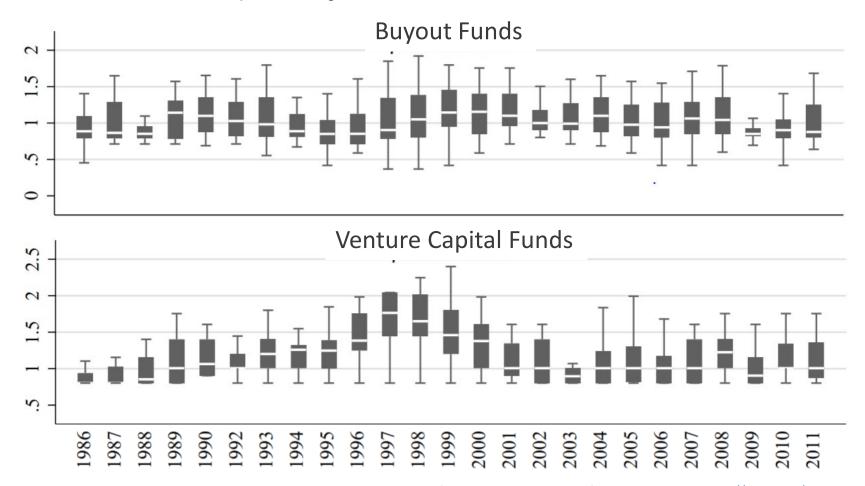
<sup>\*</sup>For more details see, Korteweg, 2019, Risk Adjustment in Private Equity Returns, *Annual Review of Financial Economics* 11(1), 131-152, and Brown, Ghysels, and Gredil, 2021, Nowcasting Net Asset Values: The Case of Private Equity, Institute for Private Capital working paper https://ssrn.com/abstract=3507873.

#### Other Methods for Risk-adjusted Performance



#### **Portfolio Models**

- Generalized PME (GPME) of Korteweg & Nagel
  - Risk-Adjusting the Returns to Venture Capital, Journal of Finance 71(3), 2016, 1437-1470.
  - Risk-Adjusted Returns of Private Equity Funds: A New Approach, <a href="https://ssrn.com/abstract=4157952">https://ssrn.com/abstract=4157952</a>
- Bayesian Markov Chain Monte Carlo (MCMC) Model
  - Ang, Chen, Goetzmann, and Phalippou, Estimating Private Equity Returns from Limited Partner Cash Flows, Journal of Finance 73(4), 2018, 1751-1783.
- Strips Method
  - Gupta and Van Nieuwerburgh, Valuing Private Equity Investments Strip by Strip, Journal of Finance 76(6), 2021, 3255-3307.


#### **Fund-level Model**

- NowCasting
  - Brown, Ghysels, and Gredil, Nowcasting Net Asset Values: The Case of Private Equity, Review of Financial Studies 36(3), 2023, 945-986.

## Time-series and cross-sectional variation in market risk



- These box-plots show estimates of market betas by vintage year for buyout and venture capital funds as estimated by Brown, Ghysels, and Gredil (2023)
  - Solid bars show interquartile range and white bar shows median



<sup>\*</sup>Brown, Ghysels, and Gredil, 2023, Nowcasting Net Asset Values: The Case of Private Equity, Institute for Private Capital <a href="https://ssrn.com/abstract=3507873">https://ssrn.com/abstract=3507873</a>.

#### A factor approach to benchmark selection



- Evidence suggests that private funds are likely to have exposure to other risk factors commonly cited in the literature such as the Fama-French size (SMB) and value (HML) factors.
- Generating benchmark returns that include other risk factors is straightforward. For example,

$$r_t^* = r_t^f + \beta^M \left( r_t^M - r_t^f \right) + \beta^{HML} r_t^{HML} + \beta^{SMB} r_t^{SMB} + \dots$$

where  $r^*$  is the factor-adjusted benchmark return,  $r^M$  is the market factor return,  $r^{HML}$  is the value factor return,  $r^{SMB}$  is the size factor return,  $r^f$  is the risk-free rate, and the  $\beta$ s represent factor loadings.

 Factor returns are available from a variety of sources including <u>Ken French's</u> <u>data library</u>.

#### Other issues



- All performance estimates for funds not fully realized rely on NAVs or some other estimate of current value.
  - Evidence suggests that NAVs are smoothed and systematically biased.\*
- Correlations matter for understanding portfolios but are also hard to estimate for private funds.
- Access is not the same for all investors so large sample statistics may not be relevant for a specific investor.
- The degree of diversification (and therefore risk) depends on each specific portfolio – for example, the number and size of fund allocations.
  - Portfolios with only a few private funds will have significant idiosyncratic risk

<sup>\*</sup> See, for example, Brown, Gredil and Kaplan, 2019, Do Private Equity Funds Manipulate Reported Returns?", *Journal of Financial Economics*, 132(2), 267-297.



uncipc.org

