Introduction

Illiquid Assets and Smoothed Returns

Andrei S. Gonçalves

Ohio State

December 2024

THE WALL STREET JOURNAL.

English Edition ▼ Print Edition | Video | Audio | Latest Headlines | More ▼

Latest World Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance Health

WEALTH MANAGEMENT

Considering Alternatives Investments? Factor in Illiquidity

Questions you need to ask before jumping into hedge funds, private real-estate or other deals

By Michael A. Pollock

 $Updated\ June\ 14,\ 2015\ 11:13\ pm\ ET$

 \Rightarrow \square \land \square

It's something to ask before investing: Once you're in, how tough will it be to get out?

Illiquidity induces (at least) two major issues

This talk will focus on (1)

THE WALL STREET JOURNAL.

English Edition ▼ Print Edition | Video | Audio | Latest Headlines | More ▼

atest World Business U.S. Politics Economy Tech **Markets&Finance** Opinion Arts Lifestyle RealEstate PersonalFinance Health

WEALTH MANAGEMENT

Considering Alternatives Investments? Factor in Illiquidity

Questions you need to ask before jumping into hedge funds, private real-estate or other deals

By Michael A. Pollock

Updated June 14, 2015 11:13 pm ET

ightleftarrow ho ho ho

- Illiquidity induces (at least) two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- This talk will focus on (1)

Introduction

THE WALL STREET JOURNAL.

English Edition ▼ Print Edition | Video | Audio | Latest Headlines | More ▼

Latest World Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance Health

WEALTH MANAGEMENT

Considering Alternatives Investments? Factor in Illiquidity

Questions you need to ask before jumping into hedge funds, private real-estate or other deals

By Michael A. Pollock

Updated June 14, 2015 11:13 pm ET

- Illiquidity induces (at least) two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- This talk will focus on (1)

Introduction

THE WALL STREET JOURNAL.

English Edition ▼ Print Edition | Video | Audio | Latest Headlines | More ▼

Latest World Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance Healt

WEALTH MANAGEMENT

Considering Alternatives Investments? Factor in Illiquidity

Questions you need to ask before jumping into hedge funds, private real-estate or other deals

By Michael A. Pollock

Updated June 14, 2015 11:13 pm ET

- Illiquidity induces (at least) two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- This talk will focus on (1)

Introduction [1] Smoothed Returns [2] Unemosthing Returns

THE WALL STREET JOURNAL.

English Edition ▼ Print Edition | Video | Audio | Latest Headlines | More ▼

Latest World Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance Healt

WEALTH MANAGEMENT

Considering Alternatives Investments? Factor in Illiquidity

Questions you need to ask before jumping into hedge funds, private real-estate or other deals

By Michael A. Pollock

Updated June 14, 2015 11:13 pm ET

- Illiquidity induces (at least) two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- This talk will focus on (1)

Market Value vs Appraised Value

Market Value vs Appraised Value

Low Volatility in Appraised Values

Low Volatility in Appraised Values

COMMENTARY & ANALYSI

Wealthy Investors Pile Into Private Equity to Escape Stock Volatility

Individual investors are pushing cash into private markets as public markets tumble, fund managers say

By Chris Cumming

May 26, 2022 6:30 am ET | WSJ PRO

Introduction [1] Smoothed Returns [2] Unsmoothing Return

Low Volatility in Appraised Values

COMMENTARY & ANALYSIS

Wealthy Investors Pile Into Private Equity to Escape Stock Volatility

Individual investors are pushing cash into private markets as public markets tumble, fund managers say

By Chris Cumming

May 26, 2022 6:30 am ET | WSJ PRO

INSTITUTIONAL INVESTOR

Subscribe Sign In Registe
Portfolio Corner Office Culture Premium Opinion Research Video Innovatio

Why Does Private Equity Get to Play Make-Believe With Prices?

Investors and managers are playing a dangerous game of "volatility laundering," Cliff Asness writes

January 6, 2023

Low Volatility in Appraised Values

Wealthy Investors Pile Into Private Equity to Escape Stock Volatility

Individual investors are pushing cash into private markets as public markets tumble, fund managers say

By Chris Cumming

May 26, 2022 6:30 am ET | WSJ PRO

Portfolio Corner Office Culture Premium

Opinion Research Video

Why Does Private Equity Get to Play Make-Believe With Prices?

Investors and managers are playing a dangerous game of "volatility laundering." Cliff Asness writes

January 6, 2023

The notion of smoothed returns raises six important questions

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - (2) How do we detect smoothed returns empirically?
 - (3) Do illiquid assets display smoothed returns empirically?
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - (3) Do illiquid assets display smoothed returns empirically?
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - (3) Do illiquid assets display smoothed returns empirically?
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - (6) How can we solve this issue (at least partially) is

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - Understated risk and overstated risk-adjusted performance

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - (6) How can we solve this issue (at least partially)?

- The notion of smoothed returns raises six important questions
 - (1) What are smoothed returns?
 - * Returns that have less volatility than if marked-to-market
 - (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns
 - (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - (6) How can we solve this issue (at least partially)?
 - * Return unsmoothing

[1] Smoothed Returns

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

Outline

[1] Smoothed Returns

[1.1] Defining and Detecting Smoothed Returns

- [2.4] Effect of Unsmoothing on Performance Measurement

- (1) What are smoothed returns
 - If that is the case, use market values to calculate returns!

- For illiquid assets, we very often do not observe market values
- So, illiquid assets often display smoothed returns
- But, ultimately, they are driven by the lack of market values
- Defining return terminology

(1) What are smoothed returns?

- Returns that have less volatility than if marked-to-market
- If that is the case, use market values to calculate returns!

- For illiquid assets, we very often do not observe market values
- So, illiquid assets often display smoothed returns
- But, ultimately, they are driven by the lack of market values
- Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!

- For illiquid assets, we very often do not observe market values
- So, illiquid assets often display smoothed returns
- But, ultimately, they are driven by the lack of market values
- Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution ...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology

- (1) What are smoothed returns?
 - o Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology:
 - Returns based on estimated values = "reported returns" (observable)
 - Returns based on market values = "economic returns" (unobservable)

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology:
 - Returns based on estimated values = "reported returns" (observable)
 - Returns based on market values = "economic returns" (unobservable)

- (1) What are smoothed returns?
 - Returns that have less volatility than if marked-to-market
 - If that is the case, use market values to calculate returns!
 - Great solution...for liquid assets
 - For illiquid assets, we very often do not observe market values
 - So, illiquid assets often display smoothed returns
 - But, ultimately, they are driven by the lack of market values
 - Defining return terminology:
 - Returns based on estimated values = "reported returns" (observable)
 - Returns based on market values = "economic returns" (unobservable)

(2) How do we detect smoothed returns empirically

[1] Smoothed Returns
[1.1] Defining and Detecting Smoothed Returns

Detecting Smoothed Returns (Logic)

- (2) How do we detect smoothed returns empirically?
 - Look for excessively positive autocorrelation in return

- (2) How do we detect smoothed returns empirically?
 - * Look for excessively positive autocorrelation in returns

• A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

V is the economic value of the asset

• A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

 $oldsymbol{V}$ is the economic value of the asset

• A simple way to think about smoothed returns is to consider

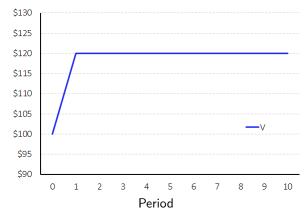
$$\log(\frac{V_{t+1}^o}{t}) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(\frac{V_t^o}{t})$$

 $oldsymbol{V}$ is the economic value of the asset

A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

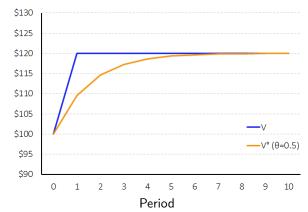
V is the economic value of the asset



A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

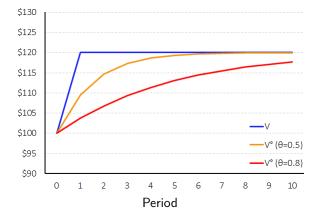
V is the economic value of the asset



A simple way to think about smoothed returns is to consider

$$\log(\frac{V_{t+1}^o}{t}) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(\frac{V_t^o}{t})$$

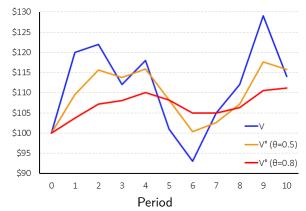
V is the economic value of the asset



A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

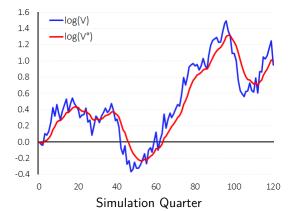
V is the economic value of the asset



• A simple way to think about smoothed returns is to consider

$$\log(V_{t+1}^o) = (1-\theta) \cdot \log(V_{t+1}) + \theta \cdot \log(V_t^o)$$

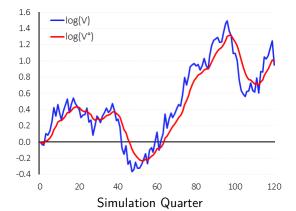
 $oldsymbol{V}$ is the economic value of the asset



• A simple way to think about smoothed returns is to consider

$$r_{t+1}^{o} = (1-\theta) \cdot r_{t+1} + \theta \cdot r_{t}^{o}$$

r is the economic log return on the asset r^o is the reported log return on the asset

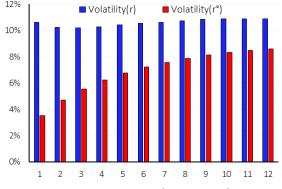


A simple way to think about smoothed returns is to consider

$$r_{t+1}^o = (1-\theta) \cdot r_{t+1} + \theta \cdot r_t^o$$

r is the economic log return on the asset

r^o is the reported log return on the asset

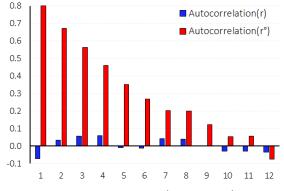


A simple way to think about smoothed returns is to consider

$$r_{t+1}^o = (1-\theta) \cdot r_{t+1} + \theta \cdot r_t^o$$

r is the economic log return on the asset

r^o is the reported log return on the asset



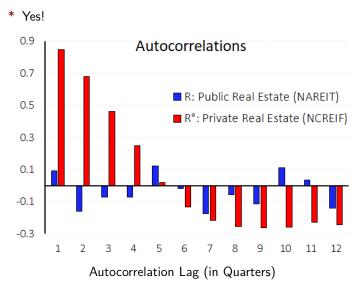
(3) Do illiquid assets display smoothed returns empirically?

(3) Do illiquid assets display smoothed returns empirically?

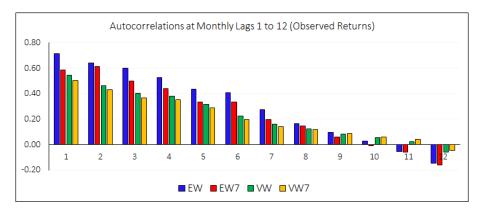
- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!

(3) Do illiquid assets display smoothed returns empirically?

(3) Do illiquid assets display smoothed returns empirically?

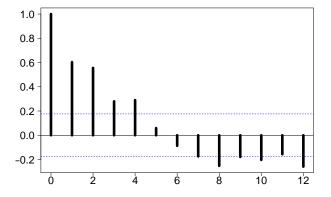


- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - For NAV REITs:

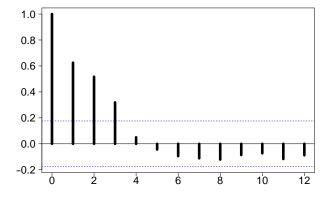


Source: Couts, Gonçalves (2024)

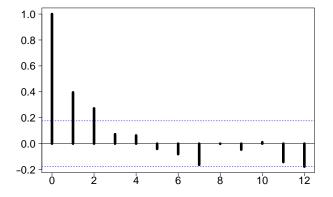
- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - For Private Equity Funds (Real Estate):



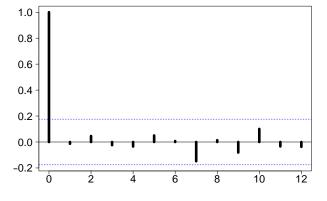
- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - For Private Equity Funds (Venture Capital):



- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - For Private Equity Funds (Buyout):

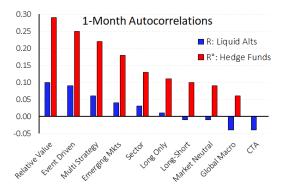


- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - For Public Equities:



- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - It is not only about private vs public markets
 - For Hedge Funds (assets are publicly traded but often illiquid)

- (3) Do illiquid assets display smoothed returns empirically?
 - * Yes!
 - It is not only about private vs public markets
 - For Hedge Funds (assets are publicly traded but often illiquid)



[1] Smoothed Returns

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement
- [2] Unsmoothing Returns
 - [2.1] MA(H) and AR(L) Unsmoothing
 - [2.2] 3-Step Unsmoothing
 - [2.3] Bayesian Justification
 - [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

Main Drivers of Smoothed Returns

(4) What is the main driver of smoothed returns

- Managers report AUM based on the value of their asset
- But managers only observe noisy signals of illiquid asset values
- So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
- But managers may manipulate reported AUM to "look good"
- Both aspects are present in the data, but illiquidity dominates

[1.2] Main Drivers of Smoothed Returns Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

[1] Smoothed Returns
[1.2] Main Drivers of Smoothed Returns

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUNI imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

Main Drivers of Smoothed Returns

- (4) What is the main driver of smoothed returns?
 - * Illiquidity (as opposed to manipulation)
 - Managers report AUM based on the value of their asset
 - But managers only observe noisy signals of illiquid asset values
 - So, optimal estimates of illiquid AUM imply smoothed returns (we formalize this statement when discussing return unsmoothing)
 - But managers may manipulate reported AUM to "look good"
 - Both aspects are present in the data, but illiquidity dominates

Table 2. Lyxor and Main Fund Smoothing

MA(1) model	Main fund	Lyxor	Difference
Average θ_1	0.182	0.121	0.061
t-Statistic	(9.22)	(6.28)	(4.35)

Source: Cao, Farnswoth, Liang, Lo (2017)

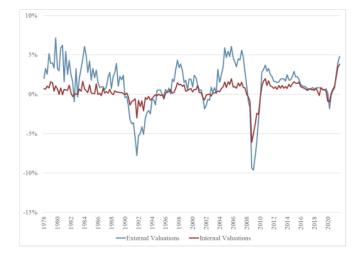


Figure 1
External vs. Internal Indexes (all observations)

Source: Couts (2024)

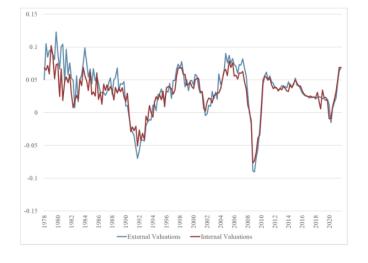
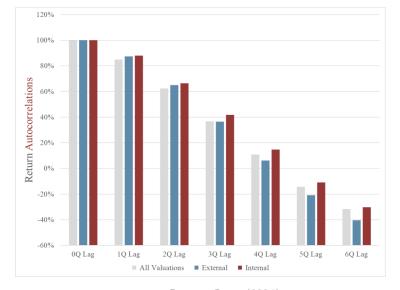


Figure 2
External vs Internal Indexes (no lame valuations)

Source: Couts (2024)



Source: Couts (2024)

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

[1] Smoothed Returns

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example

lacktriangle In this case, the risk exposure estimated using $R_t^{oldsymbol{arphi}}$ is

And the estimated alpha is

• So, $\beta^{o} < \beta$ and $\alpha^{o} > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example

lacktriangle In this case, the risk exposure estimated using $R_t^{oldsymbol{arphi}}$ is

And the estimated alpha is

• So, $\beta^{\circ} < \beta$ and $\alpha^{\circ} > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

lacktriangle In this case, the risk exposure estimated using $R_t^{oldsymbol{arphi}}$ is

And the estimated alpha is

• So, $\beta^{\circ} < \beta$ and $\alpha^{\circ} > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1-\theta) \cdot R_t + \theta \cdot R_{t-1}$$

 $R_t = \beta \cdot R_{m,t} + \epsilon_t$

ullet In this case, the risk exposure estimated using κ_t is

And the estimated alpha is

• So. $\beta^{\circ} < \beta$ and $\alpha^{\circ} > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

lacktriangle in this case, the risk exposure estimated using K_t^* is

And the estimated alpha is

• So. $\beta^{\circ} < \beta$ and $\alpha^{\circ} > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_{t}^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \frac{\mathbb{C}ov[R_{t}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta)$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_t^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_t, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta)$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_{t}^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_{t}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \beta$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_t^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_t, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \beta$$

$$\alpha^{\circ} = \mathbb{E}[R^{\circ}] - \beta^{\circ} \cdot \mathbb{E}[R_m] = (\beta - \beta^{\circ}) \cdot \mathbb{E}[R_m] = \beta \cdot \mathbb{E}[R^{\circ}]$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_t^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_t, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \beta$$

$$\alpha^{o} = \mathbb{E}[R^{o}] - \beta^{o} \cdot \mathbb{E}[R_{m}] = (\beta - \beta^{o}) \cdot \mathbb{E}[R_{m}] = M \cdot \mathbb{E}[R^{o}]$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_t^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_t, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \beta$$

$$\alpha^{o} = \mathbb{E}[R^{o}] - \beta^{o} \cdot \mathbb{E}[R_{m}] = (\beta - \beta^{o}) \cdot \mathbb{E}[R_{m}] = \theta \cdot \mathbb{E}[R^{o}]$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

• In this case, the risk exposure estimated using R_t^o is

$$\beta^{\circ} = \frac{\mathbb{C}ov[R_t^{\circ}, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \frac{\mathbb{C}ov[R_t, R_{m,t}]}{\mathbb{V}ar[R_{m,t}]} = (1 - \theta) \cdot \beta$$

And the estimated alpha is

$$\alpha^{\circ} = \mathbb{E}[R^{\circ}] - \beta^{\circ} \cdot \mathbb{E}[R_m] = (\beta - \beta^{\circ}) \cdot \mathbb{E}[R_m] = \theta \cdot \mathbb{E}[R^{\circ}]$$

• So, $\beta^o < \beta$ and $\alpha^o > 0$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 - \circ So, the risk that matters is β° and not β
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 - So, the risk that matters is β^{o} and not $\beta!$
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
- So, the risk that matters is β^{o} and not $\beta!$
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

$$R_t^o = -(1- heta) \cdot eta \cdot 10\%$$
 and $R_{t+1}^o = - heta \cdot eta \cdot 10\%$

$$R_{t+1}^o + R_t^o = -\beta \cdot 10\%$$

• If you hold the investment for 2 periods, what matters is β !

- (5) How do smoothed returns impact performance measurement?
 - Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 So, the risk that matters is β° and not β!
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

$$R_t^o = -(1-\theta) \cdot \beta \cdot 10\%$$
 and $R_{t+1}^o = -\theta \cdot \beta \cdot 10\%$

$$R_{t+1}^o + R_t^o = -\beta \cdot 10\%$$

- (5) How do smoothed returns impact performance measurement?
 - Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 So, the risk that matters is β° and not β!
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

$$R_t^o = -(1-\theta) \cdot \beta \cdot 10\%$$
 and $R_{t+1}^o = -\theta \cdot \beta \cdot 10\%$

 $R_{t+1}^o + R_t^o = -\beta \cdot 10\%$

- (5) How do smoothed returns impact performance measurement?
 - Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 So, the risk that matters is β° and not β!
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

- (5) How do smoothed returns impact performance measurement?
 - * Understated risk and overstated risk-adjusted performance
 - Consider a simple example:

$$R_t^o = (1 - \theta) \cdot R_t + \theta \cdot R_{t-1}$$

$$R_t = \beta \cdot R_{m,t} + \epsilon_t$$

- Objection: reported values better reflect "fundamental value"
 - So, the risk that matters is β^{o} and not $\beta!$
- Consider $R_{m,t} = -10\%$ with no other movement in markets:

• If you hold the investment for 2 periods, what matters is β !

- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives

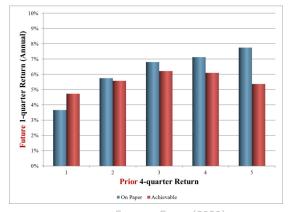
- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives

- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives
 - Front-end & back-end loads, lock-in periods, gates, queues.

- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives
 - Front-end & back-end loads, lock-in periods, gates, queues...

- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives
 - Front-end & back-end loads, lock-in periods, gates, queues...

- Buying and selling illiquid assets incurs large transaction costs (e.g., Nadauld et al (2019), Boyer et al (2023))
- Funds impose restrictions that limit market timing incentives
 - Front-end & back-end loads, lock-in periods, gates, queues...



Source: Couts (2022)

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

- $[2.1] \; \mathsf{MA}(\mathsf{H})$ and $\mathsf{AR}(\mathsf{L})$ Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = \theta_j^{(0)} \cdot R_{j,t} + \theta_j^{(1)} \cdot R_{j,t-1} + \dots + \theta_j^{(H)} \cdot R_{j,t-H}$$
where $\sum_{h=0}^{H} \theta_j^{(h)} = 1$ (information is eventually incorporated

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{j=0}^{H} \theta_j^{(h)}$
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = \theta_{j}^{(0)} \cdot R_{j,t} + \theta_{j}^{(1)} \cdot R_{j,t-1} + ... + \theta_{j}^{(H)} \cdot R_{j,t-H}$$

where $\sum_{h=0}^{H} heta_{j}^{(n)}=1$ (information is eventually incorporated

• Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \overset{\text{\tiny identification:}}{\sim} \mathcal{N}(0,\sigma_j^2)$

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(n)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{k=1}^{N} \theta_j^{(k)}$
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = \theta_{j}^{(0)} \cdot R_{j,t} + \theta_{j}^{(1)} \cdot R_{j,t-1} + \dots + \theta_{j}^{(H)} \cdot R_{j,t-H}$$
where $\sum_{h=0}^{H} \theta_{j}^{(h)} = 1$ (information is eventually incorporated)

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(n)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{k=1}^{n} \theta_k^{(k)}$
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = \theta_j^{(0)} \cdot R_{j,t} + \theta_j^{(1)} \cdot R_{j,t-1} + \dots + \theta_j^{(H)} \cdot R_{j,t-H}$$

where $\sum_{h=0}^{H} \theta_j^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{o} = \mu_{j} + \theta_{j}^{(0)} \cdot \eta_{j,t} + \theta_{j}^{(1)} \cdot \eta_{j,t-1} + \dots + \theta_{j}^{(H)} \cdot \eta_{j,t-H}$$

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{i=0}^{H} \theta_i^{(h)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = \theta_{j}^{(0)} \cdot R_{j,t} + \theta_{j}^{(1)} \cdot R_{j,t-1} + \dots + \theta_{j}^{(H)} \cdot R_{j,t-H}$$
where $\sum_{h=0}^{H} \theta_{j}^{(h)} = 1$ (information is eventually incorporated)

• Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_j^2)$ $R_{i,t}^o = \mu_i + \theta_i^{(0)} \cdot \eta_{j,t} + \theta_i^{(1)} \cdot \eta_{j,t-1} + ... + \theta_i^{(H)} \cdot \eta_{j,t-H}$

- This is a MA(H): moving average process of order F
- Estimate μ_j and $\theta_j^{(n)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(n)} = 1$, so divide estimates by $\sum_{k=0}^{H} \theta_j^{(n)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = \theta_j^{(0)} \cdot R_{j,t} + \theta_j^{(1)} \cdot R_{j,t-1} + \dots + \theta_j^{(H)} \cdot R_{j,t-H}$$

where $\sum_{h=0}^{H} \theta_j^{(h)} = 1$ (information is eventually incorporated)

• Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_j^2)$ $R_{i,t}^o = \mu_j + \theta_i^{(0)} \cdot \eta_{i,t} + \theta_i^{(1)} \cdot \eta_{i,t-1} + ... + \theta_i^{(H)} \cdot \eta_{i,t-H}$

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{j=0}^{H} \theta_j^{(h)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = \theta_j^{(0)} \cdot R_{j,t} + \theta_j^{(1)} \cdot R_{j,t-1} + \dots + \theta_j^{(H)} \cdot R_{j,t-H}$$

where $\sum_{h=0}^H \theta_j^{(h)} = 1$ (information is eventually incorporated)

• Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_j^2)$ $R_{i,t}^o = \mu_j + \theta_i^{(0)} \cdot \eta_{i,t} + \theta_i^{(1)} \cdot \eta_{i,t-1} + ... + \theta_i^{(H)} \cdot \eta_{i,t-H}$

- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{h=0}^{H} \theta_j^{(h)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = \theta_j^{(0)} \cdot R_{j,t} + \theta_j^{(1)} \cdot R_{j,t-1} + \dots + \theta_j^{(H)} \cdot R_{j,t-H}$$

where $\sum_{h=0}^H \theta_j^{(h)} = 1$ (information is eventually incorporated)

- Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_i^2)$ $R_{i,t}^o = \mu_i + \theta_i^{(0)} \cdot \eta_{i,t} + \theta_i^{(1)} \cdot \eta_{i,t-1} + ... + \theta_i^{(H)} \cdot \eta_{i,t-H}$
- This is a MA(H): moving average process of order H
- Estimate μ_i and $\theta_i^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_i^{(0)} = 1$, so divide estimates by $\sum_{h=0}^{H} \theta_i^{(h)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = \theta_{j}^{(0)} \cdot R_{j,t} + \theta_{j}^{(1)} \cdot R_{j,t-1} + \dots + \theta_{j}^{(H)} \cdot R_{j,t-H}$$
where $\sum_{h=0}^{H} \theta_{j}^{(h)} = 1$ (information is eventually incorporated)

- Identification: $R_{j,t} = \mu_j + \eta_{j,t}$ with $\eta_{j,t} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_j^2)$ $R_{j,t}^o = \mu_j + \theta_j^{(0)} \cdot \eta_{j,t} + \theta_j^{(1)} \cdot \eta_{j,t-1} + \dots + \theta_j^{(H)} \cdot \eta_{j,t-H}$
- This is a MA(H): moving average process of order H
- Estimate μ_j and $\theta_j^{(h)}$ by MLE (Getmansky, Lo, Makarov (2004)) (MLE typically imposes $\theta_j^{(0)} = 1$, so divide estimates by $\sum_{h=0}^{H} \theta_j^{(h)}$)
- Get $\eta_{i,t}$ from MA(H) residuals to obtain unsmoothed returns:

$$R_{j,t} = \mu_j + \eta_{j,t}$$

Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^{o}$$

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1-\theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{n} heta_{j}^{m} = 1$ (information is eventually incorporated

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_i and θ_i by OLS (Geltner (1991, 1993))
- Get $\epsilon_{i,t}$ from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} \theta_{j}^{(h)} = 1$ (information is eventually incorporated)

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_i and θ_i by OLS (Geltner (1991, 1993))
- Get $\epsilon_{i,t}$ from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} \theta_j^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{\circ} = \mu_j + \theta_j \cdot (R_{j,t-1}^{\circ} - \mu_j) + \underbrace{(1 - \theta_j) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order :
- We can estimate μ_i and θ_i by OLS (Geltner (1991, 1993))
- Get $\epsilon_{i,t}$ from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^{o} = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^{o}$$

where $\sum_{h=0}^{H} heta_j^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{o} = \mu_j + \theta_j \cdot (R_{j,t-1}^{o} - \mu_j) + \underbrace{(1 - \theta_j) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_i and θ_i by OLS (Geltner (1991, 1993))
- Get $\epsilon_{i,t}$ from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} heta_{j}^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{o} = \mu_{j} + \theta_{j} \cdot (R_{j,t-1}^{o} - \mu_{j}) + \underbrace{(1 - \theta_{j}) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_i and θ_i by OLS (Geltner (1991, 1993))
- Get ϵ_{i+} from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} heta_{j}^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{o} = \mu_{j} + \theta_{j} \cdot (R_{j,t-1}^{o} - \mu_{j}) + \underbrace{(1 - \theta_{j}) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_j and θ_j by OLS (Geltner (1991, 1993))
- Get ϵ_{i+} from AR(1) residuals to obtain unsmoothed returns:

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1 - \theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} heta_{j}^{(h)} = 1$ (information is eventually incorporated)

$$R_{j,t}^{o} = \mu_j + \theta_j \cdot (R_{j,t-1}^{o} - \mu_j) + \underbrace{(1 - \theta_j) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_j and θ_j by OLS (Geltner (1991, 1993))
- Get $\epsilon_{j,t}$ from AR(1) residuals to obtain unsmoothed returns:

$$R_{j,t} = \mu_j + \epsilon_{j,t}/(1-\theta_j)$$

• Reported returns (R°) reflect past economic returns (R):

$$R_{j,t}^o = (1-\theta_j) \cdot R_{j,t} + \theta_j \cdot R_{j,t-1}^o$$

where $\sum_{h=0}^{H} heta_{j}^{(h)} = 1$ (information is eventually incorporated)

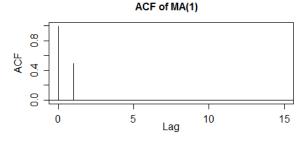
$$R_{j,t}^{o} = \mu_j + \theta_j \cdot (R_{j,t-1}^{o} - \mu_j) + \underbrace{(1 - \theta_j) \cdot \eta_{j,t}}_{\epsilon_{j,t}}$$

- This is an AR(1): autoregressive process of order 1
- We can estimate μ_j and θ_j by OLS (Geltner (1991, 1993))
- Get $\epsilon_{i,t}$ from AR(1) residuals to obtain unsmoothed returns:

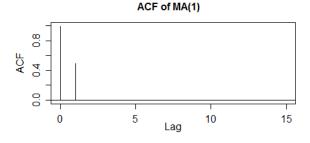
$$R_{j,t} = \mu_j + \epsilon_{j,t}/(1-\theta_j)$$

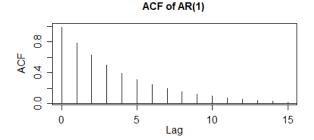
Autocorrelation Functions: MA(1) and AR(1)

Autocorrelation Functions: MA(1) and AR(1)



Autocorrelation Functions: MA(1) and AR(1)





Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

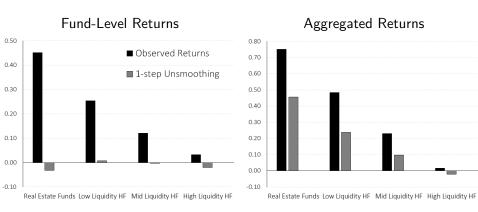
[2] Unsmoothing Returns

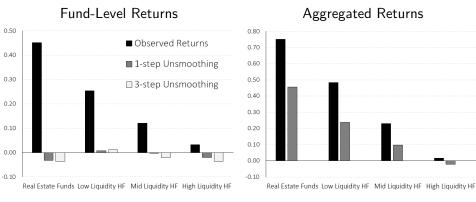
- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

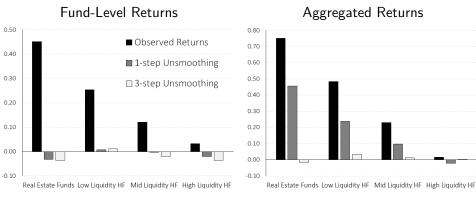
Motivation: Autocorrelations (1 Lag)

Fund-Level Returns 0.50 ■ Observed Returns 0.40 ■ 1-step Unsmoothing 0.30 0.20 0.10 0.00 -0.10 Real Estate Funds Low Liquidity HF Mid Liquidity HF High Liquidity HF





Motivation: Autocorrelations (1 Lag)



• R° reflects past aggregate (R) and relative (R) returns

• **Step 1**: $\overline{\eta}_t$ from MA(H) on R_t

• Step 2: $\widetilde{\eta}_{i,t}$ from MA(H) on $\widetilde{R}_{i,t}^{o}$ with $\overline{\eta}_{s}$ as covariates

• Step 3: $R_{j,t} = \mu_j + \widetilde{\eta}_{j,t} + \overline{\eta}_t$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$R_{j,t}^{o} = \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \overline{R}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{R}_{t-h}$$

$$= \mu_{j} + \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \overline{\eta}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{\eta}_{t-h}$$
where $\sum_{h=0}^{H} \phi_{j}^{(h)} = \sum_{h=0}^{H} \pi_{j}^{(h)} = 1$

• Step 1: $\overline{\eta}_t$ from MA(H) on \overline{R}_t°

• Step 2: \widetilde{n}_{i} , from MA(H) on \widetilde{R}^{ϱ} , with \overline{n}_{S} as covariates

• Step 3: $R_{i,t} = \mu_i + \widetilde{\eta}_{i,t} + \overline{\eta}_t$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$R_{j,t}^{o} = \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{R}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{R}_{t-h}$$

$$= \mu_{j} + \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{R}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{R}_{t-h}$$

where
$$\sum_{h=0}^{H} \phi_{j}^{(h)} = \sum_{h=0}^{H} \pi_{j}^{(h)} = 1$$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$R_{j,t}^{o} = \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{R}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{R}_{t-h}$$

$$= \mu_{j} + \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{\eta}_{j,t-h} + \sum_{h=0}^{H} \pi_{j}^{(h)} \cdot \overline{\eta}_{t-h}$$

where $\sum_{h=0}^{n} \phi_{j}^{(n)} = \sum_{h=0}^{n} \pi_{j}^{(n)} = 1$

• **Step 1**: $\overline{\eta}_t$ from MA(H) on \overline{R}_t°

• Step 2: $\widetilde{\eta}_{i,t}$ from MA(H) on \widetilde{R}_{i}^{o} , with $\overline{\eta}s$ as covariates

• Step 3: $R_{i,t} = \mu_i + \widetilde{\eta}_{i,t} + \overline{\eta}_t$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• Step 1: $\overline{\eta}_t$ from MA(H) on R_t

• Step 2: $\widetilde{\eta}_{i,t}$ from MA(H) on \widetilde{R}_{i}^{o} , with $\overline{\eta}s$ as covariates

• Step 3: $R_{i,t} = \mu_i + \widetilde{\eta}_{i,t} + \overline{\eta}_t$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• **Step 1**: $\overline{\eta}_t$ from MA(H) on \overline{R}_t^o

$$\overline{R}_{j,t}^{\circ} \approx \mu_j + \sum_{h=0}^{H} \overline{\pi}^{(h)} \cdot \overline{\eta}_{t-h}$$

• Step 2: $\widetilde{\eta}_{i,t}$ from MA(H) on \widetilde{R}_i^o , with $\overline{\eta}s$ as covariates

• R° reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• **Step 1**: $\overline{\eta}_t$ from MA(H) on \overline{R}_t^o

$$\overline{R}_{j,t}^{o} \approx \mu_{j} + \sum_{h=0}^{H} \overline{\pi}^{(h)} \cdot \overline{\eta}_{t-h}$$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• **Step 1**: $\overline{\eta}_t$ from MA(H) on \overline{R}_t^o

$$\overline{R}_{j,t}^{o} \approx \mu_{j} + \sum_{h=0}^{H} \overline{\pi}^{(h)} \cdot \overline{\eta}_{t-h}$$

• Step 2: $\widetilde{\eta}_{j,t}$ from MA(H) on $\widetilde{R}_{j,t}^o$ with $\overline{\eta}s$ as covariates

$$\widetilde{R}_{j,t}^{o} = \mu_{j} + \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{\eta}_{j,t-h} + \sum_{h=0}^{H} \psi_{j}^{(h)} \cdot \overline{\eta}_{t-h}$$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• **Step 1**: $\overline{\eta}_t$ from MA(H) on \overline{R}_t^o

$$\overline{R}_{j,t}^{o} \approx \mu_{j} + \sum_{h=0}^{H} \overline{\pi}^{(h)} \cdot \overline{\eta}_{t-h}$$

• Step 2: $\widetilde{\eta}_{j,t}$ from MA(H) on $\widetilde{R}_{j,t}^o$ with $\overline{\eta}s$ as covariates

$$\widetilde{R}_{j,t}^{\circ} = \mu_j + \sum_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} + \sum_{h=0}^{H} \psi_j^{(h)} \cdot \overline{\eta}_{t-h}$$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{R}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{R}_{t-h} \\ &= \mu_j \, + \, \sum\nolimits_{h=0}^{H} \phi_j^{(h)} \cdot \widetilde{\eta}_{j,t-h} \, + \, \sum\nolimits_{h=0}^{H} \pi_j^{(h)} \cdot \overline{\eta}_{t-h} \end{split}$$
 where $\sum\nolimits_{h=0}^{H} \phi_j^{(h)} = \sum\nolimits_{h=0}^{H} \pi_j^{(h)} = 1$

• Step 1: $\overline{\eta}_t$ from MA(H) on \overline{R}_t^o

$$\overline{R}_{j,t}^{o} \approx \mu_{j} + \sum_{h=0}^{H} \overline{\pi}^{(h)} \cdot \overline{\eta}_{t-h}$$

• Step 2: $\widetilde{\eta}_{j,t}$ from MA(H) on $\widetilde{R}_{i,t}^o$ with $\overline{\eta}s$ as covariates

$$\widetilde{R}_{j,t}^{o} = \mu_{j} + \sum_{h=0}^{H} \phi_{j}^{(h)} \cdot \widetilde{\eta}_{j,t-h} + \sum_{h=0}^{H} \psi_{j}^{(h)} \cdot \overline{\eta}_{t-h}$$

• Step 3: $R_{j,t} = \mu_j + \widetilde{\eta}_{j,t} + \overline{\eta}_t$

$$\begin{split} R_{j,t}^o &= (1 - \phi_j) \cdot R_{j,t} + \phi_j \cdot R_{j,t-1}^o + (1 - \pi_j) \cdot \overline{R}_t + \pi_j \cdot \overline{R}_{j,t-2}^o \\ &= \mu_j + \phi_j \cdot (\overline{R}_{j,t-1}^o - \overline{\mu}_j) + \pi_j \cdot (\overline{R}_{j,t-1}^o - \overline{\mu}_j) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_j) \cdot \overline{\eta}_{j,t} + (1 - \pi_j) \cdot \overline{\eta}_t$$

- ullet **Step 1**: $\epsilon_{j,t}$ are residuals in the time-series regression above
- Step 2: $\overline{\epsilon}_t pprox (1-\overline{\pi}) \cdot \overline{\eta}_t \qquad \Rightarrow \qquad \overline{\eta}_t = \overline{\epsilon}_t/(1-\overline{\pi})$
- Step 3: $R_{i,t} = \mu_i + \widetilde{\eta}_{i,t} + \overline{\eta}_i$

$$R_{j,t}^{o} = (1 - \phi_{j}) \cdot \widetilde{R}_{j,t} + \phi_{j} \cdot \widetilde{R}_{j,t-1}^{o} + (1 - \pi_{j}) \cdot \overline{R}_{t} + \pi_{j} \cdot \overline{R}_{j,t-1}^{o}$$

$$= \mu_{j} + \phi_{j} \cdot (\overline{R}_{j,t-1}^{o} - \overline{\mu}_{j}) + \pi_{j} \cdot (\overline{R}_{j,t-1}^{o} - \overline{\mu}_{j}) + \epsilon_{j,t}$$
where $\epsilon_{j,t} = (1 - \phi_{j}) \cdot \overline{\eta}_{j,t} + (1 - \pi_{j}) \cdot \overline{\eta}_{j}$

$$R_{j,t}^{o} = (1 - \phi_{j}) \cdot \widetilde{R}_{j,t} + \phi_{j} \cdot \widetilde{R}_{j,t-1}^{o} + (1 - \pi_{j}) \cdot \overline{R}_{t} + \pi_{j} \cdot \overline{R}_{j,t-1}^{o}$$

$$= \mu_{j} + \phi_{j} \cdot (\widetilde{R}_{j,t-1}^{o} - \widetilde{\mu}_{j}) + \pi_{j} \cdot (\overline{R}_{j,t-1}^{o} - \overline{\mu}_{j}) + \epsilon_{j,t}$$
where $\epsilon_{j,t} = (1 - \phi_{j}) \cdot \eta_{j,t} + (1 - \pi_{j}) \cdot \eta_{j,t}$

- **Step 1**: $\epsilon_{j,t}$ are residuals in the time-series regression above
- Step 2: $\overline{\epsilon}_t \approx (1-\overline{\pi}) \cdot \overline{\eta}_t$ \Rightarrow $\overline{\eta}_t = \overline{\epsilon}_t/(1-\overline{\pi})$
- Step 3: $R_{i,t} = \mu_i + \widetilde{\eta}_{i,t} + \overline{\eta}_i$

$$\begin{split} R_{j,t}^{o} &= (1 - \phi_{j}) \cdot \widetilde{R}_{j,t} + \phi_{j} \cdot \widetilde{R}_{j,t-1}^{o} + (1 - \pi_{j}) \cdot \overline{R}_{t} + \pi_{j} \cdot \overline{R}_{j,t-1}^{o} \\ &= \mu_{j} + \phi_{j} \cdot (\widetilde{R}_{j,t-1}^{o} - \widetilde{\mu}_{j}) + \pi_{j} \cdot (\overline{R}_{j,t-1}^{o} - \overline{\mu}_{j}) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_{j}) \cdot \widetilde{\eta}_{j,t} + (1 - \pi_{j}) \cdot \overline{\eta}_{t}$$

• Step 2:
$$\overline{\epsilon}_t \approx (1-\overline{\pi}) \cdot \overline{\eta}_t$$
 \Rightarrow $\overline{\eta}_t = \overline{\epsilon}_t/(1-\overline{\pi})$

• R° reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^{o} &= (1 - \phi_{j}) \cdot \widetilde{R}_{j,t} + \phi_{j} \cdot \widetilde{R}_{j,t-1}^{o} + (1 - \pi_{j}) \cdot \overline{R}_{t} + \pi_{j} \cdot \overline{R}_{j,t-1}^{o} \\ &= \mu_{j} + \phi_{j} \cdot (\widetilde{R}_{j,t-1}^{o} - \widetilde{\mu}_{j}) + \pi_{j} \cdot (\overline{R}_{j,t-1}^{o} - \overline{\mu}_{j}) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_{j}) \cdot \widetilde{\eta}_{j,t} + (1 - \pi_{j}) \cdot \overline{\eta}_{t}$$

• Step 1: $\epsilon_{i,t}$ are residuals in the time-series regression above

• Step 2:
$$\overline{\epsilon}_t \approx (1-\overline{\pi}) \cdot \overline{\eta}_t$$
 \Rightarrow $\overline{\eta}_t = \overline{\epsilon}_t/(1-\overline{\pi})$

$$\begin{split} R_{j,t}^o &= (1 - \phi_j) \cdot \widetilde{R}_{j,t} + \phi_j \cdot \widetilde{R}_{j,t-1}^o + (1 - \pi_j) \cdot \overline{R}_t + \pi_j \cdot \overline{R}_{j,t-1}^o \\ &= \mu_j + \phi_j \cdot (\widetilde{R}_{j,t-1}^o - \widetilde{\mu}_j) + \pi_j \cdot (\overline{R}_{j,t-1}^o - \overline{\mu}_j) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_j) \cdot \widetilde{\eta}_{j,t} + (1 - \pi_j) \cdot \overline{\eta}_t$$

- Step 1: $\epsilon_{j,t}$ are residuals in the time-series regression above
- Step 2: $\overline{\epsilon}_t \approx (1 \overline{\pi}) \cdot \overline{\eta}_t$ \Rightarrow $\overline{\eta}_t = \overline{\epsilon}_t / (1 \overline{\pi})$
- Step 3: $R_{j,t} = \mu_j + \widetilde{\eta}_{j,t} + \overline{\eta}_{t}$

• R^o reflects past aggregate (\overline{R}) and relative (\widetilde{R}) returns:

$$\begin{split} R_{j,t}^o &= (1 - \phi_j) \cdot \widetilde{R}_{j,t} + \phi_j \cdot \widetilde{R}_{j,t-1}^o + (1 - \pi_j) \cdot \overline{R}_t + \pi_j \cdot \overline{R}_{j,t-1}^o \\ &= \mu_j + \phi_j \cdot (\widetilde{R}_{j,t-1}^o - \widetilde{\mu}_j) + \pi_j \cdot (\overline{R}_{j,t-1}^o - \overline{\mu}_j) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_j) \cdot \widetilde{\eta}_{j,t} + (1 - \pi_j) \cdot \overline{\eta}_t$$

• **Step 1**: $\epsilon_{j,t}$ are residuals in the time-series regression above

• Step 2:
$$\overline{\epsilon}_t \approx (1 - \overline{\pi}) \cdot \overline{\eta}_t$$
 \Rightarrow $\overline{\eta}_t = \overline{\epsilon}_t / (1 - \overline{\pi})$

• Step 3: $R_{j,t} = \mu_j + \widetilde{\eta}_{j,t} + \overline{\eta}_t$ where

$$\widetilde{\eta}_{j,t} = \frac{\epsilon_{j,t} - (1 - \pi_j) \cdot \overline{\eta}_t}{(1 - \phi_i)}$$

$$\begin{split} R_{j,t}^o &= (1 - \phi_j) \cdot \widetilde{R}_{j,t} + \phi_j \cdot \widetilde{R}_{j,t-1}^o + (1 - \pi_j) \cdot \overline{R}_t + \pi_j \cdot \overline{R}_{j,t-1}^o \\ &= \mu_j + \phi_j \cdot (\widetilde{R}_{j,t-1}^o - \widetilde{\mu}_j) + \pi_j \cdot (\overline{R}_{j,t-1}^o - \overline{\mu}_j) + \epsilon_{j,t} \end{split}$$

$$\text{where } \epsilon_{j,t} = (1 - \phi_j) \cdot \widetilde{\eta}_{j,t} + (1 - \pi_j) \cdot \overline{\eta}_t$$

- **Step 1**: $\epsilon_{j,t}$ are residuals in the time-series regression above
- Step 2: $\overline{\epsilon}_t \approx (1 \overline{\pi}) \cdot \overline{\eta}_t \qquad \Rightarrow \qquad \overline{\eta}_t = \overline{\epsilon}_t / (1 \overline{\pi})$
- Step 3: $R_{j,t} = \mu_j + \widetilde{\eta}_{j,t} + \overline{\eta}_t$ where

$$\widetilde{\eta}_{j,t} = \frac{\epsilon_{j,t} - (1 - \pi_j) \cdot \overline{\eta}_t}{(1 - \phi_j)}$$

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Conclusion

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$

ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

The manager reports the Bayesian estimate for the fund value

• In this case, the reported return is

- Consider a simple framework for $v_{j,t} = log(V_{j,t})$:
 - $v_{j,t} = \mu_j + v_{j,t-1} + \eta_{j,t}$ with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$
- ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

The manager reports the Bayesian estimate for the fund value,

• In this case, the reported return is

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

 \bullet At ι , the manager learns $v_{j,t-1}$ and observes the horsy signal

The manager reports the Bayesian estimate for the fund value,

In this case, the reported return is

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0,\widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value

• In this case, the reported return is

• Consider a simple framework for $v_{i,t} = log(V_{i,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

• At t, the manager learns $v_{i,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

$$egin{array}{lll} egin{array}{lll} egin{arra$$

• In this case, the reported return is

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

$$\mathbf{v}_{j,t}^{o} = \mu_{j} + \mathbf{v}_{j,t-1} + \underbrace{\mathbb{E}[\eta_{j,t}|\widehat{\eta}_{j,t}]}_{\theta_{j}^{(0)}.\widehat{\eta}_{j,t}}$$

In this case, the reported return is

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

• At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

$$\begin{array}{cccc} \mathbf{v_{j,t}^o} &=& \mu_j \; + \; \mathbf{v_{j,t-1}} \; + \; \underbrace{\mathbb{E}[\eta_{j,t}|\widehat{\eta_{j,t}}]}_{\theta_j^{(0)} \cdot \widehat{\eta_{j,t}}} \end{array}$$
 where $\theta_j^{(0)} = (1/\widehat{\sigma}_j^2)/(1/\sigma_j^2 + 1/\widehat{\sigma}_j^2)$

In this case, the reported return is

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

ullet At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

$$\begin{array}{cccc} \mathbf{v}^{o}_{j,t} &=& \mu_{j} \; + \; \mathbf{v}_{j,t-1} \; + \; \underbrace{\mathbb{E}[\eta_{j,t}|\widehat{\eta}_{j,t}]}_{\theta^{(0)}_{j} \cdot \widehat{\eta}_{j,t}} \end{array}$$
 where $\theta^{(0)}_{j} = (1/\widehat{\sigma}^{2}_{j})/(1/\sigma^{2}_{j} + 1/\widehat{\sigma}^{2}_{j})$

• In this case, the reported return is

$$r_{j,t}^o = v_{j,t}^o - v_{j,t-1}^o = (v_{j,t-1} - v_{j,t-2}) + \theta_j^{(i)} \cdot (v_{j,t} - v_{j,t-1})$$

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

ullet At t, the manager learns $\emph{v}_{\emph{j},t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

In this case, the reported return is

$$r_{j,t}^o = v_{j,t}^o - v_{j,t-1}^o = (v_{j,t-1} - v_{j,t-2}) + \theta_j^{(0)} \cdot (\widehat{\eta}_{j,t} - \widehat{\eta}_{j,t-1})$$

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$\mathbf{v}_{j,t} = \mu_j + \mathbf{v}_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

• At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

In this case, the reported return is

$$r_{j,t}^{o} = v_{j,t}^{o} - v_{j,t-1}^{o} = (v_{j,t-1} - v_{j,t-2}) + \theta_{j}^{(0)} \cdot (\widehat{\eta}_{j,t} - \widehat{\eta}_{j,t-1})$$

$$= \theta_{j}^{(0)} \cdot r_{j,t} + (1 - \theta_{j}^{(0)}) \cdot r_{j,t-1} + \xi_{j,t}$$

• Consider a simple framework for $v_{j,t} = log(V_{j,t})$:

$$v_{j,t} = \mu_j + v_{j,t-1} + \eta_{j,t}$$
 with $\eta_{j,t} \sim \mathcal{N}(0, \sigma_j^2)$

• At t, the manager learns $v_{j,t-1}$ and observes the noisy signal

$$\widehat{\eta}_{j,t} = \eta_{j,t} + u_{j,t}$$
 with $u_{j,t} \sim \mathcal{N}(0, \widehat{\sigma}_j^2)$

The manager reports the Bayesian estimate for the fund value,

$$\begin{array}{cccc} \mathbf{v_{j,t}^o} &=& \mu_j \; + \; \mathbf{v_{j,t-1}} \; + \; \underbrace{\mathbb{E}[\eta_{j,t}|\widehat{\eta_{j,t}}]}_{\theta_j^{(0)} \cdot \widehat{\eta_{j,t}}} \end{array}$$
 where $\theta_j^{(0)} = (1/\widehat{\sigma}_j^2)/(1/\sigma_j^2 + 1/\widehat{\sigma}_j^2)$

• In this case, the reported return is

where $\xi_{i,t} = \theta_i^{(0)} \cdot (u_{i,t} - u_{i,t-1})$

$$r_{j,t}^{o} = v_{j,t}^{o} - v_{j,t-1}^{o} = (v_{j,t-1} - v_{j,t-2}) + \theta_{j}^{(0)} \cdot (\widehat{\eta}_{j,t} - \widehat{\eta}_{j,t-1})$$

$$= \theta_{j}^{(0)} \cdot r_{j,t} + (1 - \theta_{j}^{(0)}) \cdot r_{j,t-1} + \xi_{j,t}$$

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{i,t}$ term (Couts, Gonçalves, Rossi (2020))

The Bayesian framework can be generalized to a MA(H)

ullet The Bayesian framework can also be generalized to a $\mathsf{AR}(\mathsf{L})$

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - o in this case, we have a MA(1) process
 - \circ VVe still have unbiased estimates of eta and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H_j

ullet The Bayesian framework can also be generalized to a AR(L)

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - In this case, we have a MA(1) process
 - \circ -vve still have unbiased estimates of ho and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H_j

The Bayesian framework can also be generalized to a AR(L)

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of eta and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H_j

The Bayesian framework can also be generalized to a AR(L)

- Our Bayesian smoothing process is a MA(1) except for $\xi_{i,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - The reason is that $\xi_{i,t}$ is uncorrelated with returns

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - \circ At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- The Bayesian framework can also be generalized to a AR(L)

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- The Bayesian framework can also be generalized to a AR(L)

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- The Bayesian framework can also be generalized to a AR(L)

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- ullet The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- ullet The Bayesian framework can also be generalized to a AR(L)
 - \circ The manager never learns $v_{j,t}$
 - \circ But the manager observes noisy signals about $\eta_{j,t}$ and $\eta_{j,t-h}$
- The Bayesian framework can justify the 3-Step method as well

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of eta and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - $\circ~$ The manager can also observe noisy signals for $\eta_{j,t-\textit{h}}$
- ullet The Bayesian framework can also be generalized to a AR(L)
 - \circ The manager never learns $v_{j,t}$
 - \circ But the manager observes noisy signals about $\eta_{j,t}$ and $\eta_{j,t-h}$
- The Bayesian framework can justify the 3-Step method as well

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of β and α
 - The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- ullet The Bayesian framework can also be generalized to a AR(L)
 - \circ The manager never learns $v_{j,t}$
 - o But the manager observes noisy signals about $\eta_{j,t}$ and $\eta_{j,t-h}$
- The Bayesian framework can justify the 3-Step method as welland

Smoothed Returns with Bayesian Fund Manager

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - \circ In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of eta and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - \circ The manager can also observe noisy signals for $\eta_{j,t-h}$
- ullet The Bayesian framework can also be generalized to a AR(L)
 - \circ The manager never learns $v_{j,t}$
 - But the manager observes noisy signals about $\eta_{i,t}$ and $\eta_{i,t-h}$
- The Bayesian framework can justify the 3-Step method as well

Smoothed Returns with Bayesian Fund Manager

- ullet Our Bayesian smoothing process is a MA(1) except for $\xi_{j,t}$
- We can ignore the $\xi_{j,t}$ term (Couts, Gonçalves, Rossi (2020))
 - In this case, we have a MA(1) process
 - \circ We still have unbiased estimates of eta and lpha
 - \circ The reason is that $\xi_{j,t}$ is uncorrelated with returns
- The Bayesian framework can be generalized to a MA(H)
 - At t, the manager learns $v_{j,t-H}$ (instead of $v_{j,t-1}$)
 - The manager can also observe noisy signals for $\eta_{j,t-h}$
- The Bayesian framework can also be generalized to a AR(L)
 - The manager never learns v_{j,t}
 - o But the manager observes noisy signals about $\eta_{j,t}$ and $\eta_{j,t-h}$
- The Bayesian framework can justify the 3-Step method as well
 - The manager observes separate signals for $\widetilde{\eta}_{i,t}$ and $\overline{\eta}_t$

Outline

Introduction

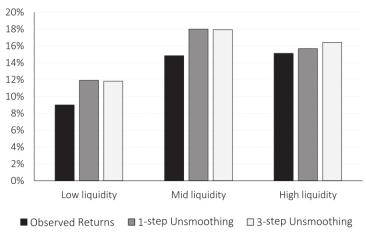
[1] Smoothed Returns

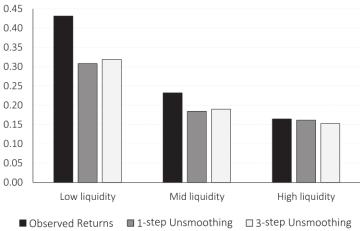
- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measurement

[2] Unsmoothing Returns

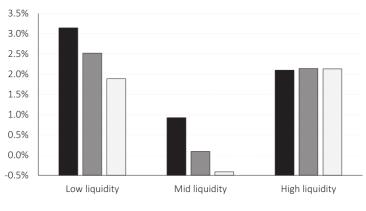
- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Average σs





Average αs



■ Observed Returns ■ 1-step Unsmoothing □ 3-step Unsmoothing

Average t_{stat}^{α}

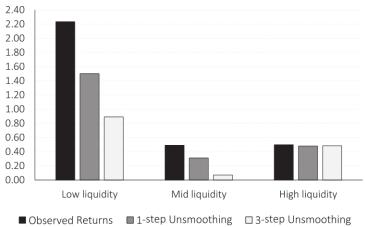


Table 7
Risk and performance of private CRE funds

Daw parformance

Kaw performance					
$\mathbb{E}[r]$	σ	$\mathbb{E}[r]/\sigma$			
5.0%	13.1%	0.38			
5.0%	25.3%	0.20			
5.0%	24.1%	0.21			
	E[r] 5.0% 5.0%	$\mathbb{E}[r]$ σ			

Table 7
Risk and performance of private CRE funds

Statistics are	Raw performance			1-factor model		
related to	$\mathbb{E}[r]$	σ	$\mathbb{E}[r]/\sigma$	α	β_{re}	
Observed, R_o	5.0%	13.1%	0.38	4.3%	0.07	
1-step, R_{1s}	5.0%	25.3%	0.20	2.7%	0.22	
3-step, R_{3s}	5.0%	24.1%	0.21	1.6%	0.34	

Table 7
Risk and performance of private CRE funds

Statistics are related to	Raw performance		1-factor model		2-factor model			
	$\mathbb{E}[r]$	σ	$\mathbb{E}[r]/\sigma$	α	β_{re}	α	β_{re}	eta_e
Observed, R_o	5.0%	13.1%	0.38	4.3%	0.07	4.0%	0.02	0.10
1-step, R_{1s}	5.0%	25.3%	0.20	2.7%	0.22	2.4%	0.15	0.15
3-step, R_{3s}	5.0%	24.1%	0.21	1.6%	0.34	0.8%	0.21	0.26

Outline

Introduction

[1] Smoothed Returns

- [1.1] Defining and Detecting Smoothed Returns
- [1.2] Main Drivers of Smoothed Returns
- [1.3] Effect of Smoothed Returns on Performance Measuremen

[2] Unsmoothing Returns

- [2.1] MA(H) and AR(L) Unsmoothing
- [2.2] 3-Step Unsmoothing
- [2.3] Bayesian Justification
- [2.4] Effect of Unsmoothing on Performance Measurement

Illiquidity induces two major issues

We explored (1) in this talk

There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk

ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk

ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk

ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- ullet There are alternative approaches to deal with (1)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- There are alternative approaches to deal with (1)
 - Dimson regressions (Dimson (1979))
 - Nowcasted NAVs (Brown, Ghysels, Gredil (2023))
 - NPVs from cash flows
 - (Gupta, Van Nieuwerburgh (2021), Korteweg, Nagel (2016, 2024))
- Need more work on how (2) affects performance measurement (see Brown, Goncalves, Hu (2024) for early work on that)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- There are alternative approaches to deal with (1)
 - O Dimson regressions (Dimson (1979))
 - Nowcasted NAVs (Brown, Ghysels, Gredil (2023))
 - NPVs from cash flows
 - (Gupta, Van Nieuwerburgh (2021), Korteweg, Nagel (2016, 2024))
- Need more work on how (2) affects performance measurement (see Brown, Goncalves, Hu (2024) for early work on that)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- There are alternative approaches to deal with (1)
 - o Dimson regressions (Dimson (1979))
 - Nowcasted NAVs (Brown, Ghysels, Gredil (2023))
 - NPVs from cash flows
 - (Gupta, Van Nieuwerburgh (2021), Korteweg, Nagel (2016, 2024))
- Need more work on how (2) affects performance measurement (see Brown, Gonçalves, Hu (2024) for early work on that)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- There are alternative approaches to deal with (1)
 - o Dimson regressions (Dimson (1979))
 - Nowcasted NAVs (Brown, Ghysels, Gredil (2023))
 - NPVs from cash flows (Gupta, Van Nieuwerburgh (2021), Korteweg, Nagel (2016, 2024))
- Need more work on how (2) affects performance measurement (see Brown, Gonçaives, Hu (2024) for early work on that)

- Illiquidity induces two major issues
 - (1) Do not observe market values: hard to measure performance
 - (2) Cannot easily buy and sell assets: hard to manage allocations
- We explored (1) in this talk
 - Discussed smoothed returns and understated risk
 - Provided a solution: return unsmoothing methods
- There are alternative approaches to deal with (1)
 - o Dimson regressions (Dimson (1979))
 - Nowcasted NAVs (Brown, Ghysels, Gredil (2023))
 - NPVs from cash flows
 (Gupta, Van Nieuwerburgh (2021), Korteweg, Nagel (2016, 2024))
- Need more work on how (2) affects performance measurement (see Brown, Gonçalves, Hu (2024) for early work on that)